// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include "paddle/fluid/inference/api/paddle_api.h" #include "paddle/fluid/inference/capi/c_api_internal.h" #include "paddle/fluid/inference/capi/paddle_c_api.h" using paddle::ConvertToACPrecision; using paddle::ConvertToPaddleDType; using paddle::ConvertToPDDataType; namespace { #define _DataTypeHelper_(CALLBACK, CPP_TYPE, PD_TYPE) \ CALLBACK(CPP_TYPE, PD_DataType::PD_TYPE); #define _DataType_(CALLBACK) \ _DataTypeHelper_(CALLBACK, float, PD_FLOAT32); \ _DataTypeHelper_(CALLBACK, int32_t, PD_INT32); \ _DataTypeHelper_(CALLBACK, int64_t, PD_INT64); \ _DataTypeHelper_(CALLBACK, uint8_t, PD_UINT8); template inline void VisitDataType(PD_DataType type, Visitor visitor) { #define VisitDataTypeCallback(CPP_TYPE, PD_TYPE) \ do { \ if (type == PD_TYPE) { \ visitor.template apply(); \ return; \ } \ } while (0) _DataType_(VisitDataTypeCallback); #undef VisitDataTypeCallback PADDLE_THROW( paddle::platform::errors::InvalidArgument("Unsupported data type.")); } struct PD_ZeroCopyFunctor { PD_ZeroCopyData* output_i; paddle::ZeroCopyTensor* output_t; PD_ZeroCopyFunctor(PD_ZeroCopyData* output_i_, paddle::ZeroCopyTensor* output_t_) : output_i(output_i_), output_t(output_t_) {} template void apply() { std::vector out_data; int out_num = std::accumulate(output_i->shape, output_i->shape + output_i->shape_size, 1, std::multiplies()); out_data.resize(out_num); output_t->copy_to_cpu(out_data.data()); output_i->data = reinterpret_cast(malloc(out_num * sizeof(OutT))); memmove(static_cast(output_i->data), out_data.data(), out_num * sizeof(OutT)); } }; } // namespace extern "C" { bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs, int in_size, PD_Tensor** output_data, int* out_size, int batch_size) { PADDLE_ENFORCE_NOT_NULL(config); VLOG(3) << "Predoctor: PD_PredictorRun. "; static std::map> predictors; if (!predictors.count(config->config.model_dir())) { predictors[config->config.model_dir()] = paddle::CreatePaddlePredictor(config->config); } auto& predictor = predictors[config->config.model_dir()]; std::vector in; for (int i = 0; i < in_size; ++i) { in.emplace_back(inputs->tensor); } std::vector out; VLOG(3) << "Run predictor in CAPI encapsulation. "; if (predictor->Run(in, &out, batch_size)) { int osize = out.size(); *output_data = new PD_Tensor[osize]; for (int i = 0; i < osize; ++i) { output_data[i]->tensor = out[i]; } *out_size = osize; return true; } return false; } bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config, PD_ZeroCopyData* inputs, int in_size, PD_ZeroCopyData** output, int* out_size) { PADDLE_ENFORCE_NOT_NULL(config); static std::map> predictors; if (!predictors.count(config->config.model_dir())) { predictors[config->config.model_dir()] = paddle::CreatePaddlePredictor(config->config); } auto& predictor = predictors[config->config.model_dir()]; auto input_names = predictor->GetInputNames(); VLOG(3) << "The inputs' size is " << input_names.size(); PADDLE_ENFORCE_EQ( input_names.size(), in_size, "The number of input and the number of model's input must match. "); for (int i = 0; i < in_size; ++i) { auto input_t = predictor->GetInputTensor(inputs[i].name); std::vector tensor_shape; tensor_shape.assign(inputs[i].shape, inputs[i].shape + inputs[i].shape_size); input_t->Reshape(tensor_shape); switch (inputs[i].dtype) { case PD_FLOAT32: input_t->copy_from_cpu(static_cast(inputs[i].data)); break; case PD_INT32: input_t->copy_from_cpu(static_cast(inputs[i].data)); break; case PD_INT64: input_t->copy_from_cpu(static_cast(inputs[i].data)); break; case PD_UINT8: input_t->copy_from_cpu(static_cast(inputs[i].data)); break; default: CHECK(false) << "Unsupport data type."; break; } } VLOG(3) << "Run ZeroCopyRun() in CAPI encapsulation. "; CHECK(predictor->ZeroCopyRun()); auto output_names = predictor->GetOutputNames(); int osize = output_names.size(); *out_size = osize; *output = new PD_ZeroCopyData[osize]; VLOG(3) << "The output size is " << osize; for (int i = 0; i < *out_size; ++i) { auto& output_i = (*output)[i]; output_i.name = new char[output_names[i].length() + 1]; snprintf(output_i.name, output_names[i].length() + 1, "%s", output_names[i].c_str()); auto output_t = predictor->GetOutputTensor(output_names[i]); output_i.dtype = ConvertToPDDataType(output_t->type()); std::vector output_shape = output_t->shape(); output_i.shape = new int[output_shape.size()]; memmove(output_i.shape, output_shape.data(), output_shape.size() * sizeof(int)); output_i.shape_size = output_shape.size(); VisitDataType(output_i.dtype, PD_ZeroCopyFunctor(&output_i, std::move(output_t.get()))); } return true; } PD_Predictor* PD_NewPredictor(const PD_AnalysisConfig* config) { PD_Predictor* predictor = new PD_Predictor; predictor->predictor = paddle::CreatePaddlePredictor(config->config); return predictor; } void PD_DeletePredictor(PD_Predictor* predictor) { if (predictor) { predictor->predictor = nullptr; delete predictor; predictor = nullptr; } } int PD_GetInputNum(const PD_Predictor* predictor) { return static_cast(predictor->predictor->GetInputNames().size()); } int PD_GetOutputNum(const PD_Predictor* predictor) { return static_cast(predictor->predictor->GetOutputNames().size()); } const char* PD_GetInputName(const PD_Predictor* predictor, int n) { static std::vector names = predictor->predictor->GetInputNames(); return names[n].c_str(); } const char* PD_GetOutputName(const PD_Predictor* predictor, int n) { static std::vector names = predictor->predictor->GetOutputNames(); return names[n].c_str(); } void PD_SetZeroCopyInput(PD_Predictor* predictor, const PD_ZeroCopyTensor* tensor) { auto input = predictor->predictor->GetInputTensor(tensor->name); auto* shape_ptr = static_cast(tensor->shape.data); std::vector shape(shape_ptr, shape_ptr + tensor->shape.length / sizeof(int)); input->Reshape(std::move(shape)); switch (tensor->dtype) { case PD_FLOAT32: input->copy_from_cpu(static_cast(tensor->data.data)); break; case PD_INT32: input->copy_from_cpu(static_cast(tensor->data.data)); break; case PD_INT64: input->copy_from_cpu(static_cast(tensor->data.data)); break; case PD_UINT8: input->copy_from_cpu(static_cast(tensor->data.data)); break; default: CHECK(false) << "Unsupport data type."; break; } if (tensor->lod.length) { auto* lod_ptr = reinterpret_cast(tensor->lod.data); std::vector lod(lod_ptr, lod_ptr + tensor->lod.length); input->SetLoD({std::move(lod)}); } } void PD_GetZeroCopyOutput(PD_Predictor* predictor, PD_ZeroCopyTensor* tensor) { auto output = predictor->predictor->GetOutputTensor(tensor->name); tensor->dtype = ConvertToPDDataType(output->type()); auto shape = output->shape(); size_t shape_size = shape.size(); if (tensor->shape.capacity < shape_size * sizeof(int)) { if (tensor->shape.data || tensor->shape.capacity) { std::free(tensor->shape.data); } tensor->shape.data = std::malloc(shape_size * sizeof(int)); tensor->shape.capacity = shape_size * sizeof(int); } tensor->shape.length = shape_size * sizeof(int); std::copy(shape.begin(), shape.end(), static_cast(tensor->shape.data)); int n = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); size_t length = n * paddle::PaddleDtypeSize(output->type()); if (tensor->data.capacity < length) { if (tensor->data.data) { std::free(tensor->data.data); } tensor->data.data = std::malloc(length); tensor->data.capacity = std::move(length); } tensor->data.length = length; auto lod = output->lod(); tensor->lod.length = lod.front().size() * sizeof(size_t); if (tensor->lod.capacity < lod.front().size()) { if (tensor->lod.data) { std::free(tensor->lod.data); } tensor->lod.data = std::malloc(lod.front().size() * sizeof(size_t)); tensor->lod.capacity = lod.front().size() * sizeof(size_t); } std::copy(lod.front().begin(), lod.front().end(), reinterpret_cast(tensor->lod.data)); switch (tensor->dtype) { case PD_FLOAT32: output->copy_to_cpu(reinterpret_cast(tensor->data.data)); break; case PD_INT32: output->copy_to_cpu(reinterpret_cast(tensor->data.data)); break; case PD_INT64: output->copy_to_cpu(reinterpret_cast(tensor->data.data)); break; case PD_UINT8: output->copy_to_cpu(reinterpret_cast(tensor->data.data)); break; default: CHECK(false) << "Unsupport data type."; break; } } void PD_ZeroCopyRun(PD_Predictor* predictor) { predictor->predictor->ZeroCopyRun(); } } // extern "C"