/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/phi/kernels/funcs/aligned_vector.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { enum { kTransposeMKLDNNFP32 = 1, kTransposeMKLDNNINT8 = 2 }; template inline void TransCompute(const int dim, const DeviceContext& dev_ctx, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { switch (dim) { case 1: phi::funcs::Transpose trans1; trans1(dev_ctx, in, out, axis); break; case 2: phi::funcs::Transpose trans2; trans2(dev_ctx, in, out, axis); break; case 3: phi::funcs::Transpose trans3; trans3(dev_ctx, in, out, axis); break; case 4: phi::funcs::Transpose trans4; trans4(dev_ctx, in, out, axis); break; case 5: phi::funcs::Transpose trans5; trans5(dev_ctx, in, out, axis); break; case 6: phi::funcs::Transpose trans6; trans6(dev_ctx, in, out, axis); break; default: // for dim >= 7 situation phi::funcs::TransposeNormal trans_normal; trans_normal(dev_ctx, in, out, axis); } } enum PermuteType { kCopy = 1, kTranspose = 2, kVecPermute = 3, kNormalPermute = 4 }; constexpr int kBlockRows = 16; constexpr int kTileSize = 32; // To avoid bank conflict. constexpr int kShareCol = kTileSize + 1; // Simplify the input dims and permute dims if possible. template class DimsSimplifier { public: explicit DimsSimplifier(const int sm_count, const int rank, const std::vector& perm, const std::vector& dims, const T* src, T* dst) : perm_(rank), dims_(rank) { SimplifyPermAndDims(rank, dims, perm); count_ = std::accumulate(dims.begin(), dims.end(), size_t{1}, std::multiplies()); if (rank_ > 1) { vec_size_ = GetPermVecSize(sm_count, src, dst); perm_.resize(rank_); dims_.resize(rank_); } } size_t GetCount() const { return count_; } int GetVecSize() const { return vec_size_; } PermuteType GetPermType() const { return type_; } std::vector GetPerm() const { return perm_; } std::vector GetDims() const { return dims_; } private: size_t rank_{1}; size_t count_{0}; int vec_size_{1}; std::vector perm_; std::vector dims_; PermuteType type_{kCopy}; void SimplifyPermAndDims(const size_t rank, const std::vector& in_dims, const std::vector& perm) { size_t combined_dims[phi::DDim::kMaxRank]; int valid_map[phi::DDim::kMaxRank]; // Merge consecutive dims to the fist one of this these dims, // and leave the origin dim value to be 1. Example below : // perm: [2, 3, 0, 1], origin_dims : [4, 8, 2, 5] // new_dims: [4, 8, 2, 5] -> [32, 1, 10, 1] size_t start_perm_idx = 0; while (start_perm_idx < rank) { const size_t start_dim_idx = perm[start_perm_idx]; combined_dims[start_dim_idx] = in_dims[start_dim_idx]; size_t end_perm_idx = start_perm_idx + 1; while (end_perm_idx < rank && perm[end_perm_idx] == perm[end_perm_idx - 1] + 1) { const size_t end_dim_idx = perm[end_perm_idx]; combined_dims[start_dim_idx] *= in_dims[end_dim_idx]; combined_dims[end_dim_idx] = 1; end_perm_idx += 1; } start_perm_idx = end_perm_idx; } // Reorder combined dims and marked useless dim as -1. // for example, if combined dims is [32, 1, 10, 1], // valid_map is [0, -1, 1, -1] and generate simplified // dims as [32, 10] size_t valid_dim_idx = 0; bool sequential_flag = false; for (size_t i = 0; i < rank; ++i) { const int src_dim = combined_dims[i]; if (src_dim == 1) { valid_map[i] = -1; } else { sequential_flag = true; valid_map[i] = valid_dim_idx; dims_[valid_dim_idx] = src_dim; valid_dim_idx += 1; } } if (valid_dim_idx == 0) { dims_[0] = 1; perm_[0] = 0; return; } else if (valid_dim_idx == 1) { type_ = PermuteType::kCopy; } // Acquire simplified perm with help of combined dims // and original perm, finally simplified perm is [1, 0] size_t perm_idx = 0; for (size_t i = 0; i < rank; ++i) { const int mapped = valid_map[perm[i]]; if (mapped >= 0) { perm_[perm_idx] = mapped; perm_idx += 1; } } rank_ = valid_dim_idx; } int GetPermVecSize(const int sm_count, const T* src, T* dst) { // For gerneal_permute kernel, there is good chance for // vectorized write. int vec_size = phi::GetVectorizedSize(dst); type_ = PermuteType::kNormalPermute; // While the last dim is fixed, there is good chance for // both vectorized read and write. if (perm_[rank_ - 1] == rank_ - 1) { int tmp_size = std::min(vec_size, phi::GetVectorizedSize(src)); tmp_size = GetDimVesSize(tmp_size, dims_[rank_ - 1]); if (tmp_size > 1) { type_ = kVecPermute; vec_size = tmp_size; // For stride calculation of src_data index. dims_[rank_ - 1] /= vec_size; } } // Once only transpose at the last 2 dims, there is good // chance for vectorized read. if ((rank_ == 2 && perm_[1] == 0 && perm_[0] == 1) || (rank_ == 3 && perm_[2] == 1 && perm_[1] == 2)) { type_ = PermuteType::kTranspose; // Compared with vectorized load or read, set config to let more // sm work simultaneously affect more according to performance. constexpr int threads = kTileSize * kTileSize; int blocks = count_ / threads; if (blocks < sm_count) { vec_size = 1; } else { int tmp_vec = std::min(vec_size, phi::GetVectorizedSize(src)); // With bytes limitation of shared_memory, the VecSize shall be // restricted for the type whose byte-size is less than 8 (double). int type_vec = sizeof(T) > 8 ? 1 : GetDimVesSize(tmp_vec, dims_[rank_ - 1]); for (int i = type_vec; i > 0; i /= 2) { if (blocks / i >= sm_count) { break; } // When blocks is smaller than sm_count, a test shown that decrease // vec_size to make blocks close to sm_count would gain performance. vec_size = i; } } dims_[rank_ - 1] /= vec_size; count_ /= vec_size; } return vec_size; } // To find if highest common divisor and make it as vec_size. int GetDimVesSize(const int vec_size, const size_t target_dim) { int dim_vec_size = 1; for (auto size = vec_size; size > 0; size /= 2) { if (target_dim % size == 0) { dim_vec_size = size; break; } } return dim_vec_size; } }; } // namespace operators } // namespace paddle