from paddle.trainer_config_helpers import * define_py_data_sources2(train_list='train.list', test_list='test.list', module='provider', obj='process') settings( batch_size=128, learning_rate=1e-3, learning_method=AdamOptimizer(), regularization=L2Regularization(0.5) ) img = data_layer(name='pixel', size=28 * 28) hidden1 = simple_img_conv_pool(input=img, filter_size=3, num_filters=32, pool_size=3, num_channel=1) hidden2 = fc_layer(input=hidden1, size=200, act=TanhActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) predict = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) outputs(classification_cost(input=predict, label=data_layer(name='label', size=10)))