# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np from py_paddle import swig_paddle def doubleEqual(a, b): return abs(a - b) < 1e-5 def __readFromFile(): for i in xrange(10002): yield np.random.rand(784), random.randint(0, 9) def loadMNISTTrainData(batch_size=100): if not hasattr(loadMNISTTrainData, "gen"): generator = __readFromFile() loadMNISTTrainData.gen = generator else: generator = loadMNISTTrainData.gen args = swig_paddle.Arguments.createArguments(2) # batch_size = 100 dense_slot = [] id_slot = [] atEnd = False for _ in xrange(batch_size): try: result = generator.next() dense_slot.extend(result[0]) id_slot.append(result[1]) except StopIteration: atEnd = True del loadMNISTTrainData.gen break dense_slot = swig_paddle.Matrix.createDense(dense_slot, batch_size, 784) id_slot = swig_paddle.IVector.create(id_slot) args.setSlotValue(0, dense_slot) args.setSlotIds(1, id_slot) return args, atEnd