/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include "paddle/fluid/operators/elementwise/elementwise_add_op.h" #include #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_xpu.h" #include "paddle/fluid/platform/device/device_wrapper.h" namespace paddle { namespace operators { template class ElementwiseAddXPUKernel : public framework::OpKernel { using XPUType = typename XPUTypeTrait::Type; public: void Compute(const framework::ExecutionContext& ctx) const override { XPUElementwise(ctx, xpu::broadcast_add); } }; template class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel { using XPUType = typename XPUTypeTrait::Type; public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); auto* x = ctx.Input("X"); auto* dz = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); const framework::DDim& dz_dims = dz->dims(); int axis = ctx.Attr("axis"); const T* dz_data = dz->data(); auto& dev_ctx = ctx.template device_context(); if (dx != nullptr) { T* dx_data = dx->mutable_data(ctx.GetPlace()); if (dx->dims() == dz_dims) { if (dx_data != dz_data) { framework::TensorCopy( *dz, ctx.GetPlace(), ctx.template device_context(), dx); } } else { // For inplace strategy, dx will be stored in addr of dz, which makes // the result of dy wrong. if (dx->IsSharedBufferWith(*dz)) { dx->clear(); dx->mutable_data(x->dims(), ctx.GetPlace()); } std::vector reduce_dims = GetReduceDim(dx->dims(), dz_dims, axis); std::vector dz_vector = framework::vectorize(dz_dims); int ret = xpu::reduce_sum( dev_ctx.x_context(), reinterpret_cast(dz_data), reinterpret_cast(dx_data), dz_vector, reduce_dims); PADDLE_ENFORCE_XDNN_SUCCESS(ret, "reduce_sum"); } } if (dy != nullptr) { T* dy_data = dy->mutable_data(ctx.GetPlace()); if (dy->dims() == dz_dims) { if (dy_data != dz_data) { framework::TensorCopy( *dz, ctx.GetPlace(), ctx.template device_context(), dy); } } else { std::vector reduce_dims = GetReduceDim(dy->dims(), dz_dims, axis); std::vector dz_vector = framework::vectorize(dz_dims); int ret = xpu::reduce_sum( dev_ctx.x_context(), reinterpret_cast(dz_data), reinterpret_cast(dy_data), dz_vector, reduce_dims); PADDLE_ENFORCE_XDNN_SUCCESS(ret, "reduce_sum"); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL(elementwise_add, ops::ElementwiseAddXPUKernel, ops::ElementwiseAddXPUKernel); REGISTER_OP_XPU_KERNEL( elementwise_add_grad, ops::ElementwiseAddGradXPUKernel, ops::ElementwiseAddGradXPUKernel); #endif