# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest from functools import partial import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler def get_places(): places = [] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places @contextlib.contextmanager def prog_scope_guard(main_prog, startup_prog): scope = fluid.core.Scope() with fluid.unique_name.guard(): with fluid.scope_guard(scope): with fluid.program_guard(main_prog, startup_prog): yield def bow_net( data, label, dict_dim, is_sparse=False, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2, ): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding( input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim] ) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = paddle.mean(x=cost) return avg_cost class TestWeightDecay(unittest.TestCase): def setUp(self): self.word_dict = paddle.dataset.imdb.word_dict() reader = paddle.batch( paddle.dataset.imdb.train(self.word_dict), batch_size=4 )() self.train_data = [next(reader) for _ in range(5)] self.learning_rate = 0.5 def run_executor(self, place, feed_list, loss): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) main_prog = fluid.default_main_program() loss_set = [] for data in self.train_data: out = exe.run( main_prog, feed=feeder.feed(data), fetch_list=[loss.name] ) print("loss %s" % (np.average(out))) loss_set.append(np.average(out)) return loss_set def run_parallel_exe( self, place, feed_list, loss, use_reduce=False, use_fast_executor=False, use_ir_memory_optimize=False, ): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) exec_strategy = fluid.ExecutionStrategy() if use_fast_executor: exec_strategy.use_experimental_executor = True build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = ( fluid.BuildStrategy.ReduceStrategy.Reduce if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce ) build_strategy.memory_optimize = use_ir_memory_optimize train_cp = compiler.CompiledProgram( fluid.default_main_program() ).with_data_parallel( loss_name=loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy, ) loss_set = [] for data in self.train_data: out = exe.run( train_cp, feed=feeder.feed(data), fetch_list=[loss.name] ) loss_set.append(np.average(out)) return loss_set def check_weight_decay( self, place, model, use_parallel_exe=False, use_reduce=False ): main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() startup_prog.random_seed = 1 with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1 ) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost = model(data, label, len(self.word_dict)) param_list = [ (var, var * self.learning_rate) for var in main_prog.block(0).all_parameters() ] optimizer = fluid.optimizer.Adagrad( learning_rate=self.learning_rate ) optimizer.minimize(avg_cost) for params in param_list: updated_p = fluid.layers.elementwise_sub( x=params[0], y=params[1] ) fluid.layers.assign(input=updated_p, output=params[0]) if use_parallel_exe: loss = self.run_parallel_exe( place, [data, label], loss=avg_cost, use_reduce=use_reduce ) else: loss = self.run_executor(place, [data, label], loss=avg_cost) return loss def test_weight_decay(self): model = partial(bow_net, is_sparse=False) for place in get_places(): loss = self.check_weight_decay(place, model, use_parallel_exe=False) # TODO(zcd): should test use_reduce=True loss2 = self.check_weight_decay( place, model, use_parallel_exe=True, use_reduce=False ) for i in range(len(loss)): self.assertTrue( np.isclose(a=loss[i], b=loss2[i], rtol=5e-5), "Expect " + str(loss[i]) + "\n" + "But Got" + str(loss2[i]) + " in class " + self.__class__.__name__, ) if __name__ == '__main__': unittest.main()