# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid def sigmoid_array(x): return 1 / (1 + np.exp(-x)) class TestLogLossOp(OpTest): def setUp(self): self.op_type = 'log_loss' samples_num = 100 x = np.random.random((samples_num, 1)).astype("float32") predicted = sigmoid_array(x) labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32") epsilon = 1e-7 self.inputs = { 'Predicted': predicted, 'Labels': labels, } self.attrs = {'epsilon': epsilon} loss = -labels * np.log(predicted + epsilon) - (1 - labels) * np.log( 1 - predicted + epsilon ) self.outputs = {'Loss': loss} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Predicted'], 'Loss', max_relative_error=0.03) class TestLogLossOpError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program()): def test_x_type(): input_data = np.random.random(100, 1).astype("float32") fluid.layers.log_loss(input_data) self.assertRaises(TypeError, test_x_type) def test_x_dtype(): x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32') fluid.layers.log_loss(x2) self.assertRaises(TypeError, test_x_dtype) def test_label_type(): input_data = np.random.random(100, 1).astype("float32") fluid.layers.log_loss(input_data) self.assertRaises(TypeError, test_label_type) def test_label_dtype(): x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32') fluid.layers.log_loss(x2) self.assertRaises(TypeError, test_label_dtype) if __name__ == '__main__': unittest.main()