# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid from functools import reduce from test_dist_base import TestDistRunnerBase, runtime_main from paddle.fluid.incubate.fleet.collective import fleet paddle.enable_static() DTYPE = "float32" paddle.dataset.mnist.fetch() # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01) ), ) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01) ), ) SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Constant(value=0.01) ), ) return predict class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = paddle.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor ) inference_program = fluid.default_main_program().clone() # Optimization # TODO(typhoonzero): fix distributed adam optimizer # opt = fluid.optimizer.AdamOptimizer( # learning_rate=0.001, beta1=0.9, beta2=0.999) if not use_dgc: opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9) else: opt = fluid.optimizer.DGCMomentumOptimizer( learning_rate=self.lr, momentum=0.9, rampup_begin_step=2 ) # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) if dist_strategy: dist_opt = fleet.distributed_optimizer( optimizer=opt, strategy=dist_strategy ) _, param_grads = dist_opt.minimize(avg_cost) else: opt.minimize(avg_cost) return ( inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, ) if __name__ == "__main__": runtime_main(TestDistMnist2x2)