# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import Model, set_device from paddle.static import InputSpec as Input from paddle.metric import Accuracy from paddle.vision.datasets import MNIST from paddle.vision.models import LeNet import paddle.static.amp as amp import random from paddle import callbacks import argparse import ast SEED = 2 paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) np.random.seed(SEED) random.seed(SEED) paddle.enable_static() set_device('cpu') def parse_args(): parser = argparse.ArgumentParser("Lenet BF16 train static script") parser.add_argument( '-bf16', '--bf16', type=ast.literal_eval, default=False, help="whether use bf16") args = parser.parse_args() return args class MnistDataset(MNIST): def __init__(self, mode, return_label=True): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) def compute_accuracy(pred, gt): pred = np.argmax(pred, -1) gt = np.array(gt) correct = pred[:, np.newaxis] == gt return np.sum(correct) / correct.shape[0] def main(args): print('download training data and load training data') train_dataset = MnistDataset(mode='train', ) val_dataset = MnistDataset(mode='test', ) test_dataset = MnistDataset(mode='test', return_label=False) im_shape = (-1, 1, 28, 28) batch_size = 64 inputs = [Input(im_shape, 'float32', 'image')] labels = [Input([None, 1], 'int64', 'label')] model = Model(LeNet(), inputs, labels) optim = paddle.optimizer.SGD(learning_rate=0.001) if args.bf16: optim = amp.bf16.decorate_bf16( optim, amp_lists=amp.bf16.AutoMixedPrecisionListsBF16( custom_bf16_list={ 'matmul_v2', 'pool2d', 'relu', 'scale', 'elementwise_add', 'reshape2', 'slice', 'reduce_mean', 'conv2d' }, )) # Configuration model model.prepare(optim, paddle.nn.CrossEntropyLoss(), Accuracy()) # Training model # if args.bf16: print('Training BF16') else: print('Training FP32') model.fit(train_dataset, epochs=2, batch_size=batch_size, verbose=1) eval_result = model.evaluate(val_dataset, batch_size=batch_size, verbose=1) output = model.predict( test_dataset, batch_size=batch_size, stack_outputs=True) np.testing.assert_equal(output[0].shape[0], len(test_dataset)) acc = compute_accuracy(output[0], val_dataset.labels) print("acc", acc) print("eval_result['acc']", eval_result['acc']) np.testing.assert_allclose(acc, eval_result['acc']) if __name__ == "__main__": args = parse_args() main(args)