// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/bce_loss_kernel.h" #include // for max #include "paddle/fluid/operators/math.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void BCELossKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& label, DenseTensor* out) { auto x_data = input.data(); auto label_data = label.data(); auto out_data = dev_ctx.template Alloc(out); auto x_numel = input.numel(); // out = -(label * ln(x) + (1 - label) * ln(1 - x)) = (label - 1) * ln(1 - // x) - label * ln(x) for (int64_t i = 0; i < x_numel; ++i) { PADDLE_ENFORCE_GE( x_data[i], static_cast(0), phi::errors::InvalidArgument( "Illegal input, input must be greater than or equal to 0")); PADDLE_ENFORCE_LE( x_data[i], static_cast(1), phi::errors::InvalidArgument( "Illegal input, input must be less than or equal to 1")); out_data[i] = (label_data[i] - static_cast(1)) * std::max(paddle::operators::real_log(static_cast(1) - x_data[i]), (T)(-100)) - label_data[i] * std::max(paddle::operators::real_log(x_data[i]), (T)(-100)); } } } // namespace phi PD_REGISTER_KERNEL( bce_loss, CPU, ALL_LAYOUT, phi::BCELossKernel, float, double) {}