// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/bce_loss_grad_kernel.h" #include // for max #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void BCELossGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& label, const DenseTensor& out_grad, DenseTensor* input_grad) { auto dx_data = dev_ctx.template Alloc(input_grad); auto dout_data = out_grad.data(); auto x_data = input.data(); auto label_data = label.data(); int x_numel = input.numel(); // dx = dout * ((x - label)/(x - x^2)) for (int i = 0; i < x_numel; ++i) { dx_data[i] = dout_data[i] * ((x_data[i] - label_data[i]) / std::max((static_cast(1) - x_data[i]) * x_data[i], static_cast(1e-12))); } } } // namespace phi PD_REGISTER_KERNEL( bce_loss_grad, CPU, ALL_LAYOUT, phi::BCELossGradKernel, float, double) {}