// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DDim = framework::DDim; const int kDefaultDim = framework::DDim::kMaxRank; inline bool CheckDims(const DDim& dims_x, const DDim& dims_y) { if (dims_x.size() != dims_y.size()) { return false; } for (int i = 0; i < dims_x.size(); i++) { if (dims_x[i] != dims_y[i]) { return false; } } return true; } template class CrossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input_x_var = context.InputVar("X"); auto* input_y_var = context.InputVar("Y"); auto* output_var = context.OutputVar("Out"); auto& input_x = input_x_var->Get(); auto& input_y = input_y_var->Get(); auto* output = output_var->GetMutable(); int dim = context.Attr("dim"); auto input_x_dims = input_x.dims(); auto input_y_dims = input_y.dims(); bool dims_match = CheckDims(input_x_dims, input_y_dims); PADDLE_ENFORCE_EQ(dims_match, true, platform::errors::InvalidArgument( "The 'shape' of Input(X) should be equal to " "the 'shape' of Input(Y). But received " "Input(X).dimensions = [%s], " "Input(Y).dimensions = [%s]", input_x_dims, input_x_dims)); if (dim != kDefaultDim) { PADDLE_ENFORCE_EQ( dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()), true, platform::errors::OutOfRange( "Attr(dim) is out of range, It's expected " "to be in range of [-%d, %d]. But received Attr(dim) = %d.", input_x_dims.size(), input_x_dims.size() - 1, dim)); if (dim < 0) { dim += input_x_dims.size(); } PADDLE_ENFORCE_EQ( input_x_dims[dim] == 3, true, platform::errors::InvalidArgument( "Input(X/Y).dims[dim] must be equal to 3. But received: " "Input(X/Y).dims[dim] = [%d].", input_x_dims[dim])); } else { for (auto i = 0; i < input_x_dims.size(); i++) { if (input_x_dims[i] == 3) { dim = i; break; } } PADDLE_ENFORCE_EQ(dim == kDefaultDim, false, platform::errors::InvalidArgument( "There must be at least one dimension 'd' so that " "Input(X/Y).dims()[d] is equal to 3. " "But received: Input(X/Y).dims() == [%s].", input_x_dims)); } auto outer_loops = 1; for (auto i = 0; i < dim; i++) { outer_loops *= input_x_dims[i]; } auto slice_size = 1; for (auto i = dim + 1; i < input_x_dims.size(); i++) { slice_size *= input_x_dims[i]; } std::vector input_x_vec, input_y_vec; framework::TensorToVector(input_x, context.device_context(), &input_x_vec); framework::TensorToVector(input_y, context.device_context(), &input_y_vec); std::vector out_vec(output->numel()); output->mutable_data(context.GetPlace()); for (auto i = 0; i < outer_loops; i++) { for (auto j = 0; j < 3; j++) { auto dst_pos = (3 * i + j) * slice_size; auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size; auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size; for (auto k = 0; k < slice_size; k++) { out_vec[dst_pos + k] = input_x_vec[in_pos1 + k] * input_y_vec[in_pos2 + k] - input_x_vec[in_pos2 + k] * input_y_vec[in_pos1 + k]; } } } framework::TensorFromVector(out_vec, context.device_context(), output); output->Resize(input_x_dims); } }; template class CrossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input_x_var = context.InputVar("X"); auto* input_y_var = context.InputVar("Y"); auto* input_out_grad_var = context.InputVar(framework::GradVarName("Out")); auto* output_x_grad_var = context.OutputVar(framework::GradVarName("X")); auto* output_y_grad_var = context.OutputVar(framework::GradVarName("Y")); auto& input_x = input_x_var->Get(); auto& input_y = input_y_var->Get(); auto& input_out_grad = input_out_grad_var->Get(); auto* output_x_grad = output_x_grad_var->GetMutable(); auto* output_y_grad = output_y_grad_var->GetMutable(); int dim = context.Attr("dim"); auto input_x_dims = input_x.dims(); if (dim != kDefaultDim) { PADDLE_ENFORCE_EQ( dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()), true, platform::errors::OutOfRange( "Attr(dim) is out of range, It's expected " "to be in range of [-%d, %d]. But received Attr(dim) = %d.", input_x_dims.size(), input_x_dims.size() - 1, dim)); if (dim < 0) { dim += input_x_dims.size(); } PADDLE_ENFORCE_EQ( input_x_dims[dim] == 3, true, platform::errors::InvalidArgument( "Input(X/Y).dims[dim] must be equal to 3. But received: " "Input(X/Y).dims[dim] = [%d].", input_x_dims[dim])); } else { for (auto i = 0; i < input_x_dims.size(); i++) { if (input_x_dims[i] == 3) { dim = i; break; } } PADDLE_ENFORCE_EQ(dim == kDefaultDim, false, platform::errors::InvalidArgument( "There must be at least one dimension 'd' " "so that Input(X/Y).dims()[d] is equal to 3. " "But received: Input(X/Y).dims() == [%s].", input_x_dims)); } auto outer_loops = 1; for (auto i = 0; i < dim; i++) { outer_loops *= input_x_dims[i]; } auto slice_size = 1; for (auto i = dim + 1; i < input_x_dims.size(); i++) { slice_size *= input_x_dims[i]; } std::vector input_x_vec, input_y_vec, input_dout_vec; framework::TensorToVector(input_x, context.device_context(), &input_x_vec); framework::TensorToVector(input_y, context.device_context(), &input_y_vec); framework::TensorToVector(input_out_grad, context.device_context(), &input_dout_vec); std::vector out_dx_vec(output_x_grad->numel()); std::vector out_dy_vec(output_y_grad->numel()); output_x_grad->mutable_data(context.GetPlace()); output_y_grad->mutable_data(context.GetPlace()); for (auto i = 0; i < outer_loops; i++) { for (auto j = 0; j < 3; j++) { auto dst_pos = (3 * i + j) * slice_size; auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size; auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size; for (auto k = 0; k < slice_size; k++) { out_dx_vec[dst_pos + k] = input_dout_vec[in_pos2 + k] * input_y_vec[in_pos1 + k] - input_dout_vec[in_pos1 + k] * input_y_vec[in_pos2 + k]; out_dy_vec[dst_pos + k] = input_dout_vec[in_pos1 + k] * input_x_vec[in_pos2 + k] - input_dout_vec[in_pos2 + k] * input_x_vec[in_pos1 + k]; } } } framework::TensorFromVector(out_dx_vec, context.device_context(), output_x_grad); framework::TensorFromVector(out_dy_vec, context.device_context(), output_y_grad); output_x_grad->Resize(input_x_dims); output_y_grad->Resize(input_x_dims); } }; } // namespace operators } // namespace paddle