# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import itertools import unittest import numpy as np import scipy import scipy.linalg from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core def scipy_lu_unpack(A): shape = A.shape if len(shape) == 2: return scipy.linalg.lu(A) else: preshape = shape[:-2] batchsize = np.product(shape) // (shape[-2] * shape[-1]) Plst = [] Llst = [] Ulst = [] NA = A.reshape((-1, shape[-2], shape[-1])) for b in range(batchsize): As = NA[b] P, L, U = scipy.linalg.lu(As) pshape = P.shape lshape = L.shape ushape = U.shape Plst.append(P) Llst.append(L) Ulst.append(U) return ( np.array(Plst).reshape(preshape + pshape), np.array(Llst).reshape(preshape + lshape), np.array(Ulst).reshape(preshape + ushape), ) def Pmat_to_perm(Pmat_org, cut): Pmat = copy.deepcopy(Pmat_org) shape = Pmat.shape rows = shape[-2] cols = shape[-1] batchsize = max(1, np.product(shape[:-2])) P = Pmat.reshape(batchsize, rows, cols) permmat = [] for b in range(batchsize): permlst = [] sP = P[b] for c in range(min(rows, cols)): idx = np.argmax(sP[:, c]) permlst.append(idx) tmp = copy.deepcopy(sP[c, :]) sP[c, :] = sP[idx, :] sP[idx, :] = tmp permmat.append(permlst) Pivot = ( np.array(permmat).reshape( list(shape[:-2]) + [ rows, ] ) + 1 ) return Pivot[..., :cut] def perm_to_Pmat(perm, dim): pshape = perm.shape bs = int(np.product(perm.shape[:-1]).item()) perm = perm.reshape((bs, pshape[-1])) oneslst = [] for i in range(bs): idlst = np.arange(dim) perm_item = perm[i, :] for idx, p in enumerate(perm_item - 1): temp = idlst[idx] idlst[idx] = idlst[p] idlst[p] = temp ones = paddle.eye(dim) nmat = paddle.scatter(ones, paddle.to_tensor(idlst), ones) oneslst.append(nmat) return np.array(oneslst).reshape(list(pshape[:-1]) + [dim, dim]) # m > n class TestLU_UnpackOp(OpTest): """ case 1 """ def config(self): self.x_shape = [2, 12, 10] self.unpack_ludata = True self.unpack_pivots = True self.dtype = "float64" def set_output(self, A): sP, sL, sU = scipy_lu_unpack(A) self.L = sL self.U = sU self.P = sP def setUp(self): self.op_type = "lu_unpack" self.python_api = paddle.tensor.linalg.lu_unpack self.python_out_sig = ["Pmat", "L", "U"] self.config() x = np.random.random(self.x_shape).astype(self.dtype) if paddle.in_dynamic_mode(): xt = paddle.to_tensor(x) lu, pivots = paddle.linalg.lu(xt) lu = lu.numpy() pivots = pivots.numpy() else: with fluid.program_guard(fluid.Program(), fluid.Program()): place = fluid.CPUPlace() if core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) xv = paddle.fluid.data( name="input", shape=self.x_shape, dtype=self.dtype ) lu, p = paddle.linalg.lu(xv) exe = fluid.Executor(place) fetches = exe.run( fluid.default_main_program(), feed={"input": x}, fetch_list=[lu, p], ) lu, pivots = fetches[0], fetches[1] self.inputs = {'X': lu, 'Pivots': pivots} self.attrs = { 'unpack_ludata': self.unpack_ludata, 'unpack_pivots': self.unpack_pivots, } self.set_output(x) self.outputs = { 'Pmat': self.P, 'L': self.L, 'U': self.U, } def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['X'], ['L', 'U'], check_eager=True) # m = n class TestLU_UnpackOp2(TestLU_UnpackOp): """ case 2 """ def config(self): self.x_shape = [2, 10, 10] self.unpack_ludata = True self.unpack_pivots = True self.dtype = "float64" # m < n class TestLU_UnpackOp3(TestLU_UnpackOp): """ case 3 """ def config(self): self.x_shape = [2, 10, 12] self.unpack_ludata = True self.unpack_pivots = True self.dtype = "float64" # batchsize = 0 class TestLU_UnpackOp4(TestLU_UnpackOp): """ case 4 """ def config(self): self.x_shape = [10, 12] self.unpack_ludata = True self.unpack_pivots = True self.dtype = "float64" class TestLU_UnpackAPI(unittest.TestCase): def setUp(self): np.random.seed(2022) def test_dygraph(self): def run_lu_unpack_dygraph(shape, dtype): if dtype == "float32": np_dtype = np.float32 elif dtype == "float64": np_dtype = np.float64 a = np.random.rand(*shape).astype(np_dtype) m = a.shape[-2] n = a.shape[-1] min_mn = min(m, n) places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: paddle.disable_static(place) x = paddle.to_tensor(a, dtype=dtype) sP, sL, sU = scipy_lu_unpack(a) LU, P = paddle.linalg.lu(x) pP, pL, pU = paddle.linalg.lu_unpack(LU, P) np.testing.assert_allclose(sU, pU, rtol=1e-05, atol=1e-05) np.testing.assert_allclose(sL, pL, rtol=1e-05, atol=1e-05) np.testing.assert_allclose(sP, pP, rtol=1e-05, atol=1e-05) tensor_shapes = [ (3, 5), (5, 5), (5, 3), # 2-dim Tensors (2, 3, 5), (3, 5, 5), (4, 5, 3), # 3-dim Tensors (2, 5, 3, 5), (3, 5, 5, 5), (4, 5, 5, 3), # 4-dim Tensors ] dtypes = ["float32", "float64"] for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes): run_lu_unpack_dygraph(tensor_shape, dtype) def test_static(self): paddle.enable_static() def run_lu_static(shape, dtype): if dtype == "float32": np_dtype = np.float32 elif dtype == "float64": np_dtype = np.float64 a = np.random.rand(*shape).astype(np_dtype) m = a.shape[-2] n = a.shape[-1] min_mn = min(m, n) places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: with fluid.program_guard(fluid.Program(), fluid.Program()): sP, sL, sU = scipy_lu_unpack(a) x = paddle.fluid.data( name="input", shape=shape, dtype=dtype ) lu, p = paddle.linalg.lu(x) pP, pL, pU = paddle.linalg.lu_unpack(lu, p) exe = fluid.Executor(place) fetches = exe.run( fluid.default_main_program(), feed={"input": a}, fetch_list=[pP, pL, pU], ) np.testing.assert_allclose( fetches[0], sP, rtol=1e-05, atol=1e-05 ) np.testing.assert_allclose( fetches[1], sL, rtol=1e-05, atol=1e-05 ) np.testing.assert_allclose( fetches[2], sU, rtol=1e-05, atol=1e-05 ) tensor_shapes = [ (3, 5), (5, 5), (5, 3), # 2-dim Tensors (2, 3, 5), (3, 5, 5), (4, 5, 3), # 3-dim Tensors (2, 5, 3, 5), (3, 5, 5, 5), (4, 5, 5, 3), # 4-dim Tensors ] dtypes = ["float32", "float64"] for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes): run_lu_static(tensor_shape, dtype) if __name__ == "__main__": paddle.enable_static() unittest.main()