# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import functools from . import framework from . import core from .framework import ( in_dygraph_mode, default_main_program, _current_expected_place, ) from .lazy_init import lazy_init_helper from .framework import program_guard import numpy as np from .core import VarDesc from . import unique_name from .data_feeder import check_variable_and_dtype, check_type, check_dtype from paddle import _C_ops, _legacy_C_ops import paddle __all__ = ['set_global_initializer'] _global_weight_initializer_ = None _global_bias_initializer_ = None def _global_weight_initializer(): """ Return the global weight initializer, The user doesn't need to use it. """ return _global_weight_initializer_ def _global_bias_initializer(): """ Return the global weight initializer, The user doesn't need to use it. """ return _global_bias_initializer_ def set_global_initializer(weight_init, bias_init=None): """ This API is used to set up global model parameter initializer in framework. After this API is invoked, the global initializer will takes effect in subsequent code. The model parameters include ``weight`` and ``bias`` . In the framework, they correspond to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable. This API only takes effect for model parameters, not for variables created through apis such as :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`. If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer, the global initializer setting here will not take effect because it has a lower priority. If you want to cancel the global initializer in framework, please set global initializer to ``None`` . Args: weight_init (Initializer): set the global initializer for ``weight`` of model parameters. bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. Default: None. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant()) x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.) # The weight of conv1 is initialized by Uniform # The bias of conv1 is initialized by Constant conv1 = nn.Conv2D(4, 6, (3, 3)) y_var1 = conv1(x_var) # If set param_attr/bias_attr too, global initializer will not take effect # The weight of conv2 is initialized by Xavier # The bias of conv2 is initialized by Normal conv2 = nn.Conv2D(4, 6, (3, 3), weight_attr=nn.initializer.XavierUniform(), bias_attr=nn.initializer.Normal()) y_var2 = conv2(x_var) # Cancel the global initializer in framework, it will takes effect in subsequent code nn.initializer.set_global_initializer(None) """ check_type( weight_init, 'weight_init', (paddle.nn.initializer.Initializer, type(None)), 'set_global_initializer', ) global _global_weight_initializer_ _global_weight_initializer_ = weight_init check_type( bias_init, 'bias_init', (paddle.nn.initializer.Initializer, type(None)), 'set_global_initializer', ) global _global_bias_initializer_ _global_bias_initializer_ = bias_init