/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h" #include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h" namespace paddle { namespace inference { namespace tensorrt { class SliceOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { // This OP is implemented by trt dynamic shpae plugin. // Dynamic shape plugin requires TRT version greater than 6.0. VLOG(4) << "convert slice op to tensorrt layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("Input")[0]); if (op_desc.HasAttr("out_threshold")) { float out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold")); engine_->SetTensorDynamicRange(input, out_scale); } std::vector axes = BOOST_GET_CONST(std::vector, op_desc.GetAttr("axes")); std::vector starts = BOOST_GET_CONST(std::vector, op_desc.GetAttr("starts")); std::vector ends = BOOST_GET_CONST(std::vector, op_desc.GetAttr("ends")); PADDLE_ENFORCE_EQ( starts.size(), axes.size(), platform::errors::InvalidArgument( "The size of starts must be equal to the size of axes.")); PADDLE_ENFORCE_EQ( ends.size(), axes.size(), platform::errors::InvalidArgument( "The size of ends must be equal to the size of axes.")); auto input_dims = input->getDimensions(); if (!engine_->with_dynamic_shape()) { // notice that input shape is [CHW] without batch axis when input has // static shape for (size_t i = input_dims.nbDims; i > 0; i--) { input_dims.d[i] = input_dims.d[i - 1]; } input_dims.d[0] = 1; // fake batchsize, not useful here for (size_t i = 0; i < axes.size(); i++) { // split on batch is not supported in TensorRT PADDLE_ENFORCE_NE(axes[i], 0, platform::errors::InvalidArgument( "Invalid slice axis. Slice on batch " "axis is not supported in TensorRT")); if (starts[i] < 0) { starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0); } if (ends[i] < 0) { ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0); } ends[i] = std::min(ends[i], input_dims.d[axes[i]]); PADDLE_ENFORCE_GT( ends[i], starts[i], platform::errors::InvalidArgument( "Attr(ends) should be greater than attr(starts) in " "slice op. But received ends = %d, starts = %d.", ends[i], starts[i])); } } nvinfer1::ILayer* layer = nullptr; if (engine_->with_dynamic_shape()) { #if IS_TRT_VERSION_GE(6000) if (engine_->use_oss() && engine_->with_ernie()) { std::vector plugin_inputs; // plugin_inputs.emplace_back(trans_layer->getOutput(0)); plugin_inputs.emplace_back(input); plugin_inputs.emplace_back(engine_->GetITensor( engine_->network()->getInput(2)->getName())); // cu_seqlens, // eval_placeholder_2 // bool ban_fp16 = engine_->disable_trt_plugin_fp16(); plugin::SpecialSlicePluginDynamic* plugin = new plugin::SpecialSlicePluginDynamic(); layer = engine_->AddDynamicPlugin(plugin_inputs.data(), plugin_inputs.size(), plugin); } else { bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::SlicePluginDynamic* plugin = new plugin::SlicePluginDynamic(starts, ends, axes, with_fp16); layer = engine_->AddDynamicPlugin(&input, 1, plugin); } #else PADDLE_THROW(platform::errors::Fatal( "You are running the TRT Dynamic Shape mode, need to confirm that " "your TRT version is no less than 6.0")); #endif } else { bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::SlicePlugin* plugin = new plugin::SlicePlugin(starts, ends, axes, with_fp16); layer = engine_->AddPlugin(&input, 1, plugin); } auto output_name = op_desc.Output("Out")[0]; RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);