// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/memory_optimize_helper.h" #include #include #include #include #include #include #include #include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/platform/cpu_info.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/gpu_info.h" #endif // PADDLE_WITH_CUDA namespace paddle { namespace framework { namespace details { using paddle::framework::VarDesc; std::vector SortOpLikeDescOrder(const ir::Graph& graph) { PADDLE_ENFORCE(graph.Has(kAllOpDescs), "Graph has no attribute of kAllOpDescs."); // 1. get op desc order auto& op_descs = graph.Get>(kAllOpDescs); // 2. topology sort order auto nodes = graph.Nodes(); std::deque ops; FilterVariables(nodes, [&](ir::Node* op) { if (op->IsOp() && op->Op() != nullptr) { ops.emplace_back(op); } }); std::unordered_map op_deps; std::list ready_ops; std::unordered_map> pending_ops; for (auto* op : ops) { std::unordered_set preceding_op; for (auto* in : op->inputs) { if (in->inputs.empty()) continue; PADDLE_ENFORCE(in->inputs.size() == 1 && in->inputs[0]->IsOp()); preceding_op.emplace(in->inputs[0]); pending_ops[in->inputs[0]].emplace(op); } op_deps[op] = preceding_op.size(); if (preceding_op.empty()) { ready_ops.emplace_back(op); } } // 3. generated op list based desc order and the topology order std::vector ret; std::list op_descs_list(op_descs.begin(), op_descs.end()); auto update_by_found_node = [&](ir::Node* found_node) { for (auto* pending_op : pending_ops[found_node]) { if (--op_deps[pending_op] == 0) { ready_ops.emplace_back(pending_op); } } ready_ops.remove(found_node); ret.emplace_back(found_node); }; while (!ready_ops.empty()) { bool all_of_ready_op_unmatched = true; for (auto it = op_descs_list.begin(); it != op_descs_list.end();) { auto op_desc = *it; ir::Node* found_node = nullptr; for (auto* op : ready_ops) { if (IsSameDesc(op->Op(), op_desc)) { found_node = op; break; } } // 3.1 op desc deleted by other pass if (found_node == nullptr) { ++it; continue; } else { all_of_ready_op_unmatched = false; it = op_descs_list.erase(it); } update_by_found_node(found_node); } // 3.2 op descs are added by other pass // preceding op non empty means some new op descs are // created, but not contained in return node list. // these new op desc may depend on each other. std::list prev_ready_ops(ready_ops); if (all_of_ready_op_unmatched) { for (auto op : prev_ready_ops) { update_by_found_node(op); } } } PADDLE_ENFORCE(std::all_of( op_deps.begin(), op_deps.end(), [&](const std::pair& p) { return p.second == 0; })); return ret; } size_t NodeSize(const VarDesc& node) { auto shape = node.GetShape(); int size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); size_t type_size = SizeOfType(node.GetDataType()); return type_size * std::abs(size); } size_t NodeSize(ir::Node* n) { auto* desc = FindVarDescInBlock(n); return NodeSize(*desc); } std::string DebugStringImpl(VarDesc* var) { std::stringstream ss; ss << var->Name(); ss << "["; try { auto shape = var->GetShape(); for (size_t i = 0; i < shape.size(); ++i) { if (i != shape.size() - 1) { ss << shape[i] << ","; } else { ss << shape[i]; } } ss << "]"; } catch (...) { ss << "Var has no VarDesc !!! Name:" << var->Name(); } return ss.str(); } std::string DebugString(ir::Node* var) { return DebugStringImpl(FindVarDescInBlock(var)); } // NOTE(dzh): based ir node, if a large node has been reused // by a small size node, then next time it appear in pool, it will // have the small size. Find the original node shap from blockdesc. VarDesc* FindVarDescInBlock(ir::Node* n) { PADDLE_ENFORCE(n->IsVar() && !n->IsCtrlVar() && n->inputs.size() == 1); BlockDesc* block = n->inputs[0]->Op()->Block(); PADDLE_ENFORCE(block->HasVar(n->Name()), string::Sprintf("Block do not has var %s", n->Name())); return block->FindVar(n->Name()); } struct NodeComparator { bool operator()(ir::Node* lhs, ir::Node* rhs) const { auto* lhs_desc = FindVarDescInBlock(lhs); auto* rhs_desc = FindVarDescInBlock(rhs); auto lhs_shape = lhs_desc->GetShape(); auto rhs_shape = rhs_desc->GetShape(); if ((lhs_shape[0] == -1 && rhs_shape[0] == -1) || (lhs_shape[0] != -1 && rhs_shape[0] != -1)) { return NodeSize(lhs) <= NodeSize(rhs); } else { return false; } } }; void OrderedSet::Insert(ir::Node* var) { PADDLE_ENFORCE(var->IsVar() && !var->IsCtrlVar()); if (mark_table_.count(var->Name()) != 0) { mark_table_[var->Name()]->emplace_back(var); return; } auto* var_desc = FindVarDescInBlock(var); auto var_shape = var_desc->GetShape(); int batch_size = static_cast(var_shape[0]); NodeComparator functor; Iter it = nodes_.begin(); while (it != nodes_.end()) { auto& prev = it->front(); auto* cache_desc = FindVarDescInBlock(prev); int cache_batch_size = cache_desc->GetShape()[0]; if ((cache_batch_size == -1 && batch_size == -1) || (cache_batch_size != -1 && batch_size != -1)) { if (functor(prev, var)) { ++it; } else { break; } } else if (cache_batch_size == -1 && batch_size != -1) { ++it; } else if (cache_batch_size != -1 && batch_size == -1) { break; } } it = nodes_.insert(it, {var}); mark_table_[var->Name()] = it; } int OrderedSet::GetNodeIndexInPool(ir::Node* var) { return std::distance(nodes_.begin(), mark_table_[var->Name()]); } ir::Node* OrderedSet::FindBestFitNode(ir::Node* var) const { ir::Node* found_node = nullptr; NodeComparator functor; for (auto it = nodes_.begin(); it != nodes_.end(); ++it) { auto& candidate = it->front(); if (functor(var, candidate)) { found_node = candidate; break; } } return found_node; } ir::Node* OrderedSet::FindNextBestFitNode(ir::Node* var, ir::Node* prev) const { ir::Node* found_node = nullptr; NodeComparator functor; auto it = std::find_if(nodes_.begin(), nodes_.end(), [&](const NodeVector& v) { if (v.front() == prev) return true; else return false; }); PADDLE_ENFORCE(it != nodes_.end(), "Not found previous in node list!"); for (it = std::next(it); it != nodes_.end(); ++it) { auto& candidate = it->front(); if (functor(var, candidate)) { found_node = candidate; break; } } return found_node; } bool OrderedSet::Has(ir::Node* var) const { if (mark_table_.count(var->Name())) { auto& node_in_samename = mark_table_.at(var->Name()); auto iter = std::find_if(node_in_samename->begin(), node_in_samename->end(), [&](ir::Node* n) { return n->Name() == var->Name(); }); return iter != node_in_samename->end(); } return false; } void OrderedSet::Erase(ir::Node* var) { PADDLE_ENFORCE(mark_table_.count(var->Name())); nodes_.erase(mark_table_[var->Name()]); mark_table_.erase(var->Name()); } std::string OrderedSet::ToString() const { std::stringstream ss; for (auto it = nodes_.begin(); it != nodes_.end(); ++it) { for (auto& node : *it) { ss << DebugString(node) << " "; } } return ss.str(); } bool NodeCanReused(ir::Node* node) { // valid the node is a var node if (node == nullptr || !node->IsVar() || node->IsCtrlVar()) return false; bool flag = true; // op output force generated in cpu, can not be reused. for (auto* op : node->inputs) { if (op->Op()->HasAttr("force_cpu")) { flag &= framework::AttrReader(op->Op()->GetAttrMap()) .Get("force_cpu") == 0; } } // var desc validation. flag &= NodeCanReused(*node->Var()); return flag; } int MinChunkSize() { int size{0}; #ifdef PADDLE_WITH_CUDA size = platform::GpuMinChunkSize(); #else size = platform::CpuMinChunkSize(); #endif // PADDLE_WITH_CUDA return size; } bool NodeCanReused(const VarDesc& node) { auto type = node.GetType(); // only these types holds bulk of gpu memory if (!(type == proto::VarType::LOD_TENSOR || type == proto::VarType::SELECTED_ROWS || type == proto::VarType::LOD_TENSOR_ARRAY)) { return false; } // persistable variable is parameter if (node.Persistable()) { return false; } // shape < min_chunk_size is meaningless. // further more, fetched loss always has size = 1 // which should not be reused. auto shape = node.GetShape(); int size = std::abs( std::accumulate(shape.begin(), shape.end(), 1, std::multiplies())); if (shape.empty() || size < MinChunkSize()) { return false; } // vars can be @EMPTY@, @LR_DECAY_REUSE_ID@. For example, while_grad std::string name = node.Name(); if (!name.empty() && name[0] == '@' && name[name.size() - 1] == '@') return false; return true; } bool OpHasSubBlock(OpDesc* desc) { const AttributeMap& attrs = desc->GetAttrMap(); for (auto& attr : attrs) { if (attr.second.type() == typeid(BlockDesc*) || // NOLINT attr.second.type() == typeid(std::vector)) // NOLINT return true; } return false; } ControlFlowGraph::ControlFlowGraph(const ir::Graph& graph) { ops_ = SortOpLikeDescOrder(graph); ConnectNodes(); } void ControlFlowGraph::BuildCFGGraph() { // FIXME(dzh): same effect with ConnectNodes, but use the control // link to build dependency graph, it goes wrong in transformer. for (ir::Node* op : ops_) { for (auto& input_var : op->inputs) { if (!input_var->inputs.empty()) { PADDLE_ENFORCE( input_var->inputs.size() == 1 && input_var->inputs[0]->IsOp(), "Preceding Op Node of Var Node must be unique"); auto* pred_op = input_var->inputs[0]; if (pred_op->Op() != nullptr) { predecessors_[op].insert(pred_op); successors_[pred_op].insert(op); } } if (input_var->IsVar() && !input_var->IsCtrlVar()) { uses_[op].insert(input_var->Name()); } } for (auto& output_var : op->outputs) { // output var may be used by many op for (auto* succ_op : output_var->outputs) { if (succ_op->Op() != nullptr) { successors_[op].insert(succ_op); predecessors_[succ_op].insert(op); } } if (output_var->IsVar() && !output_var->IsCtrlVar()) { defs_[op].insert(output_var->Name()); } } } } void ControlFlowGraph::ConnectNodes() { for (size_t i = 0; i < ops_.size(); ++i) { auto& op = ops_[i]; try { auto& next_op = ops_.at(i + 1); successors_[op].insert(next_op); predecessors_[next_op].insert(op); } catch (...) { // do nothing } FilterVariables(op->inputs, [&](ir::Node* var) { uses_[op].emplace(var->Name()); }); FilterVariables(op->outputs, [&](ir::Node* var) { defs_[op].emplace(var->Name()); }); } } void ControlFlowGraph::LiveVariableAnalysis() { // NOTE(dzh): variable liveless analysis (a.k.a reversed_ops algorithm) // compute the liveness of for each variable though reversed_ops algorithm. // It iterates the operators from end to begin, compute the live in/live out // variable set for each op, then the diff between in/out will be used for // the variable reuse. For detail refer to // http://www.cs.cornell.edu/courses/cs4120/2013fa/lectures/lec26-fa13.pdf std::list work_list(ops_.rbegin(), ops_.rend()); while (!work_list.empty()) { ir::Node* op = work_list.front(); work_list.pop_front(); // get the live_in calculated before. Empty if first. auto prev_live_in = std::move(live_in_[op]); for (auto& s : successors_[op]) { for (auto& var : live_in_[s]) { live_out_[op].insert(var); } } for (auto& var : uses_[op]) { live_in_[op].insert(var); } for (auto& var : live_out_[op]) { live_in_[op].insert(var); } for (auto& var : defs_[op]) { live_in_[op].erase(var); } // If the live_in is not changed, then the liveness analysis of // predecessors is completed. // // Otherwise, recalculate the predecessors liveness if (live_in_[op] != prev_live_in) { for (auto& pre : predecessors_[op]) { work_list.push_back(pre); } } } } void ControlFlowGraph::RenameVarInCFGGraph(const std::string& old_node, const std::string& new_node, int begin_idx) { // update graph from begin idx to the end for (size_t i = begin_idx; i != ops_.size(); ++i) { auto* op = ops_[i]; if (uses_[op].find(old_node) != uses_[op].end()) { uses_[op].erase(old_node); uses_[op].insert(new_node); } if (defs_[op].find(old_node) != defs_[op].end()) { defs_[op].erase(old_node); defs_[op].insert(new_node); } if (live_in_[op].find(old_node) != live_in_[op].end()) { live_in_[op].erase(old_node); live_in_[op].insert(new_node); } if (live_out_[op].find(old_node) != live_out_[op].end()) { live_out_[op].erase(old_node); live_out_[op].insert(new_node); } } } const std::set ControlFlowGraph::LiveIn(ir::Node* op) const { auto it = live_in_.find(op); PADDLE_ENFORCE( it != live_in_.end(), string::Sprintf("Expect %s in live_in, but Not Found.", op->Name())); return it->second; } const std::set ControlFlowGraph::LiveOut(ir::Node* op) const { auto it = live_out_.find(op); PADDLE_ENFORCE( it != live_out_.end(), string::Sprintf("Expect %s in live_out, but Not Found.", op->Name())); return it->second; } const std::set ControlFlowGraph::Use(ir::Node* op) const { auto it = uses_.find(op); PADDLE_ENFORCE( it != uses_.end(), string::Sprintf("Expect %s in live_out, but Not Found.", op->Name())); return it->second; } const std::vector ControlFlowGraph::Ops() const { return ops_; } std::vector& ControlFlowGraph::Ops() { return ops_; } ir::Node* ControlFlowGraph::GetNodeByName(const std::string& name, ir::Node* op) const { // in ssa-graph, different version nodes have same name, // this function get the latest version var before target op // It may return nullptr, such as data node. ir::Node* found_node = nullptr; for (auto* node : ops_) { if (node == op) break; for (auto& output : node->outputs) { if (output->Name() == name) { found_node = output; } } } return found_node; } } // namespace details } // namespace framework } // namespace paddle