# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.vision.ops import roi_pool, RoIPool class TestRoIPool(unittest.TestCase): def setUp(self): self.data = np.random.rand(1, 256, 32, 32).astype('float32') boxes = np.random.rand(3, 4) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 self.boxes = boxes.astype('float32') self.boxes_num = np.array([3], dtype=np.int32) def roi_pool_functional(self, output_size): if isinstance(output_size, int): output_shape = (3, 256, output_size, output_size) else: output_shape = (3, 256, output_size[0], output_size[1]) if paddle.in_dynamic_mode(): data = paddle.to_tensor(self.data) boxes = paddle.to_tensor(self.boxes) boxes_num = paddle.to_tensor(self.boxes_num) pool_out = roi_pool( data, boxes, boxes_num=boxes_num, output_size=output_size) np.testing.assert_equal(pool_out.shape, output_shape) else: data = paddle.static.data( shape=self.data.shape, dtype=self.data.dtype, name='data') boxes = paddle.static.data( shape=self.boxes.shape, dtype=self.boxes.dtype, name='boxes') boxes_num = paddle.static.data( shape=self.boxes_num.shape, dtype=self.boxes_num.dtype, name='boxes_num') pool_out = roi_pool( data, boxes, boxes_num=boxes_num, output_size=output_size) place = paddle.CPUPlace() exe = paddle.static.Executor(place) pool_out = exe.run(paddle.static.default_main_program(), feed={ 'data': self.data, 'boxes': self.boxes, 'boxes_num': self.boxes_num }, fetch_list=[pool_out]) np.testing.assert_equal(pool_out[0].shape, output_shape) def test_roi_pool_functional_dynamic(self): self.roi_pool_functional(3) self.roi_pool_functional(output_size=(3, 4)) def test_roi_pool_functional_static(self): paddle.enable_static() self.roi_pool_functional(3) paddle.disable_static() def test_RoIPool(self): roi_pool_c = RoIPool(output_size=(4, 3)) data = paddle.to_tensor(self.data) boxes = paddle.to_tensor(self.boxes) boxes_num = paddle.to_tensor(self.boxes_num) pool_out = roi_pool_c(data, boxes, boxes_num) np.testing.assert_equal(pool_out.shape, (3, 256, 4, 3)) def test_value(self, ): data = np.array([i for i in range(1, 17)]).reshape(1, 1, 4, 4).astype(np.float32) boxes = np.array( [[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(np.float32) boxes_num = np.array([2]).astype(np.int32) output = np.array([[[[11.]]], [[[16.]]]], dtype=np.float32) data = paddle.to_tensor(data) boxes = paddle.to_tensor(boxes) boxes_num = paddle.to_tensor(boxes_num) roi_pool_c = RoIPool(output_size=1) pool_out = roi_pool_c(data, boxes, boxes_num) np.testing.assert_almost_equal(pool_out.numpy(), output) if __name__ == '__main__': unittest.main()