/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #define MAX_RANK_SUPPORTED 6 #define EXPAND_AS_TEMPLATE(z, n, data) \ case n + 1: { \ ExpandAs(context); \ break; \ } #define REP_EXPAND_AS_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_AS_TEMPLATE, ~) #define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED)) #define EXPAND_AS_GRAD_CASE(n) \ case n: { \ ExpandAsBackward(context, reshape_dims_vec, reduce_dims_vec); \ break; \ } #define EXPAND_AS_GRAD_TEMPLATE(z, n, data) \ BOOST_PP_IF(COND(n), EXPAND_AS_GRAD_CASE(n), ) #define REP_EXPAND_AS_GRAD_TEMPLATE(n) \ BOOST_PP_REPEAT(n, EXPAND_AS_GRAD_TEMPLATE, ~) namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template using EigenTensor = framework::EigenTensor; template class ExpandAsKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto rank = context.Input("X")->dims().size(); switch (rank) { REP_EXPAND_AS_TEMPLATE(MAX_RANK_SUPPORTED) default: PADDLE_THROW(platform::errors::InvalidArgument( "Only support tensor with rank being between 1 and 6. But received " "tensor X's rank = %d.", rank)); } } protected: template void ExpandAs(const framework::ExecutionContext& context) const { auto* in0 = context.Input("X"); auto in_dims = in0->dims(); auto* target_tensor = context.Input("target_tensor"); auto* out0 = context.Output("Out"); Eigen::DSizes bcast_dims; int bcast_dims_remainder = 0; auto x_dims = in0->dims(); auto y_dims = target_tensor->dims(); for (int i = 0; i < y_dims.size(); ++i) { PADDLE_ENFORCE_NE( x_dims[i], 0UL, platform::errors::InvalidArgument( "X(input) should not have 0 dim. But received x_dims[%d] = 0.", i)); bcast_dims[i] = y_dims[i] / x_dims[i]; bcast_dims_remainder += y_dims[i] % x_dims[i]; } PADDLE_ENFORCE_EQ( bcast_dims_remainder, 0UL, platform::errors::InvalidArgument( "X(input) could not be broadcast together with remapped " "shape(expand tensor's shape)")); framework::DDim out_dims(in_dims); for (size_t i = 0; i < bcast_dims.size(); ++i) { out_dims[i] *= bcast_dims[i]; } out0->Resize(out_dims); auto x = EigenTensor::From(*in0); out0->mutable_data(context.GetPlace()); auto y = EigenTensor::From(*out0); auto& place = *context.template device_context().eigen_device(); y.device(place) = x.broadcast(bcast_dims); } }; template class ExpandAsGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); auto* target_tensor = context.Input("target_tensor"); auto x_dims = in0->dims(); auto y_dims = target_tensor->dims(); std::vector bcast_dims; for (int i = 0; i < y_dims.size(); ++i) { bcast_dims.push_back(y_dims[i] / x_dims[i]); } std::vector reshape_dims_vec; std::vector reduce_dims_vec; for (size_t i = 0; i < bcast_dims.size(); ++i) { reduce_dims_vec.push_back(reshape_dims_vec.size()); reshape_dims_vec.push_back(bcast_dims[i]); reshape_dims_vec.push_back(x_dims[i]); } int dims = reduce_dims_vec.size(); bool just_copy = true; for (size_t i = 0; i < bcast_dims.size(); i++) { if (bcast_dims[i] != 1) { just_copy = false; break; } } // no need reduce, just copy if (just_copy) { auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); framework::TensorCopy(*in0, context.GetPlace(), context.device_context(), out0); } else { switch (dims) { REP_EXPAND_AS_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) default: PADDLE_THROW(platform::errors::InvalidArgument( "Only support tensor with rank being between 1 and 6. But " "received tensor's rank = %d.", dims)); } } } protected: template void ExpandAsBackward(const framework::ExecutionContext& context, const std::vector& reshape_dims_vec, const std::vector& reduce_dims_vec) const { size_t reshape_size = reshape_dims_vec.size(); size_t reduce_size = reduce_dims_vec.size(); auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); auto x_grad = EigenVector::Flatten(*out0); Eigen::DSizes reshape_dims; for (size_t i = 0; i < reshape_size; ++i) { reshape_dims[i] = reshape_dims_vec[i]; } Eigen::DSizes reduce_dims; for (size_t i = 0; i < reduce_size; ++i) { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad = EigenVector::Flatten(*in0); x_grad.device( *context.template device_context().eigen_device()) = out_grad.reshape(reshape_dims) .sum(reduce_dims) .reshape(x_grad.dimensions()); } }; } // namespace operators } // namespace paddle