# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core class TestInplace(unittest.TestCase): def test_forward_version(self): with paddle.fluid.dygraph.guard(): var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32)) self.assertEqual(var.inplace_version, 0) var[0] = 1.1 self.assertEqual(var.inplace_version, 1) paddle.assign(paddle.ones(shape=[3]), var) # NOTE(liym27): assign(input, output) is an inplace operation for output. # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1. self.assertEqual(var.inplace_version, 2) var[2] = 3 self.assertEqual(var.inplace_version, 3) def test_backward_error(self): # It raises an error because the inplace operator will result # in incorrect gradient computation. with paddle.fluid.dygraph.guard(): var_a = paddle.ones(shape=[4, 2, 3], dtype="float32") var_a.stop_gradient = False var_b = var_a**2 # Here, the gradient computation will use the value of var_b var_c = var_b**2 var_b[1:2] = 3.3 # var_b is modified inplace after using it var_d = var_b**2 loss = paddle.nn.functional.relu(var_c + var_d) with self.assertRaisesRegexp( RuntimeError, "received tensor_version:{} != wrapper_version_snapshot:{}". format(1, 0)): loss.backward() def test_backward_success_1(self): # var_b is modified inplace before using it, the inplace operator doesn't result # in incorrect gradient computation. with paddle.fluid.dygraph.guard(): var_a = paddle.ones(shape=[4, 2, 3], dtype="float32") var_a.stop_gradient = False var_b = var_a**2 var_b[1:2] = 3 # var_b is modified inplace before using it # Here, the gradient computation will use the value of var_b var_c = var_b**2 loss = var_c.sum() loss.backward() def test_backward_success_2(self): # Although var_b is modified inplace after using it, it does not used in gradient computation. # The inplace operator doesn't result in incorrect gradient computation. with paddle.fluid.dygraph.guard(): var_a = paddle.ones(shape=[4, 2, 3], dtype="float32") var_a.stop_gradient = False var_b = var_a**2 var_b[1:2] = 3 # var_b is modified inplace before using it var_c = var_b + var_b # Here, the grad op of sum doesn't use the value of var_b loss = var_c.sum() var_b[1:2] = 3 # var_b is modified inplace after using it loss.backward() if __name__ == '__main__': unittest.main()