/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #define MAX_RANK_SUPPORTED 6 #define EXPAND_TEMPLATE(z, n, data) \ case n + 1: { \ Expand(context); \ break; \ } #define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~) #define COND(n) \ BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \ BOOST_PP_MOD(n, MAX_RANK_SUPPORTED)) #define EXPAND_GRAD_CASE(n) \ case n: { \ ExpandBackward(context, reshape_dims_vec, reduce_dims_vec); \ break; \ } #define EXPAND_GRAD_TEMPLATE(z, n, data) \ BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), ) #define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~) namespace paddle { namespace operators { inline std::vector get_expand_times( const framework::ExecutionContext& ctx) { auto list_expand_times_tensor = ctx.MultiInput("expand_times_tensor"); if (list_expand_times_tensor.size() > 0) { // get tensor from std::vector vec_epxand_times; for (size_t i = 0; i < list_expand_times_tensor.size(); ++i) { auto tensor = list_expand_times_tensor[i]; if (platform::is_gpu_place(tensor->place())) { framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); vec_epxand_times.push_back(*temp.data()); } else { vec_epxand_times.push_back(*tensor->data()); } } return vec_epxand_times; } else { return ctx.Attr>("expand_times"); } } using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template using EigenTensor = framework::EigenTensor; template class ExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto rank = context.Input("X")->dims().size(); switch (rank) { REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED) default: PADDLE_ENFORCE(false, "Only support tensor with rank being between 1 and 6."); } } protected: template void Expand(const framework::ExecutionContext& context) const { auto* in0 = context.Input("X"); auto in_dims = in0->dims(); auto expand_times = get_expand_times(context); auto* out0 = context.Output("Out"); Eigen::DSizes bcast_dims; for (size_t i = 0; i < expand_times.size(); ++i) { bcast_dims[i] = expand_times[i]; } framework::DDim out_dims(in_dims); for (size_t i = 0; i < expand_times.size(); ++i) { out_dims[i] *= expand_times[i]; } out0->Resize(out_dims); auto x = EigenTensor::From(*in0); out0->mutable_data(context.GetPlace()); auto y = EigenTensor::From(*out0); auto& place = *context.template device_context().eigen_device(); y.device(place) = x.broadcast(bcast_dims); } }; template class ExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); // auto& expand_times = context.Attr>("expand_times"); auto expand_times = get_expand_times(context); auto x_dims = in0->dims(); // 1. reshape_dims_vec is the broadcast parameter. For each dimension i, // if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two // dimensions [expand_times[i], x_dims[i]]. // 2. reduce_dims_vec is the dimension parameter to compute gradients. For // each dimension expanded, the gradients should be summed to original // size. std::vector reshape_dims_vec; std::vector reduce_dims_vec; for (size_t i = 0; i < expand_times.size(); ++i) { if (expand_times[i] == 1) { reshape_dims_vec.push_back(x_dims[i]); } else { if (x_dims[i] == 1) { reduce_dims_vec.push_back(reshape_dims_vec.size()); reshape_dims_vec.push_back(expand_times[i]); } else { reduce_dims_vec.push_back(reshape_dims_vec.size()); reshape_dims_vec.push_back(expand_times[i]); reshape_dims_vec.push_back(x_dims[i]); } } } int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED + reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1; // no need reduce, just copy if (reduce_dims_vec.size() == 0) { auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); framework::TensorCopy(*in0, context.GetPlace(), context.device_context(), out0); } else { switch (dims) { REP_EXPAND_GRAD_TEMPLATE(72) default: PADDLE_ENFORCE( false, "Only support tensor with rank being between 1 and 6."); } } } protected: template void ExpandBackward(const framework::ExecutionContext& context, const std::vector& reshape_dims_vec, const std::vector& reduce_dims_vec) const { size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1; size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1; PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(), "Inconsistent size between template Dims and " "reshape dimensions."); PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(), "Inconsistent size between template Dims and " "reduce dimensions."); auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); auto x_grad = EigenVector::Flatten(*out0); Eigen::DSizes reshape_dims; for (size_t i = 0; i < reshape_size; ++i) { reshape_dims[i] = reshape_dims_vec[i]; } Eigen::DSizes reduce_dims; for (size_t i = 0; i < reduce_size; ++i) { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad = EigenVector::Flatten(*in0); x_grad.device( *context.template device_context().eigen_device()) = out_grad.reshape(reshape_dims) .sum(reduce_dims) .reshape(x_grad.dimensions()); } }; } // namespace operators } // namespace paddle