/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace operators { enum ArgMinMaxType { kArgMin, kArgMax }; template struct ArgMinMaxFunctor {}; #define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \ template \ struct ArgMinMaxFunctor { \ void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \ framework::LoDTensor* out, framework::DDim x_dims, \ int64_t axis, bool keepdims) { \ auto in_eigen = framework::EigenTensor::From(in, x_dims); \ if (keepdims) { \ auto out_eigen = framework::EigenTensor::From(*out); \ out_eigen.device(*(ctx.eigen_device())) = \ in_eigen.eigen_op_type(axis).template cast(); \ } else { \ auto out_eigen = framework::EigenTensor::From(*out); \ out_eigen.device(*(ctx.eigen_device())) = \ in_eigen.eigen_op_type(axis).template cast(); \ } \ } \ } DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin); DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax); template struct VisitDataArgMinMaxFunctor { const framework::ExecutionContext& ctx; explicit VisitDataArgMinMaxFunctor(const framework::ExecutionContext& ctx) : ctx(ctx) {} template void apply() const { auto& x = *(ctx.Input("X")); auto& out = *(ctx.Output("Out")); out.template mutable_data(ctx.GetPlace()); auto axis = ctx.Attr("axis"); auto keepdims = ctx.Attr("keepdims"); const bool& flatten = ctx.Attr("flatten"); // if flatten, will construct the new dims for the cacluate framework::DDim x_dims; if (flatten) { x_dims = framework::make_ddim({x.numel()}); // if flatten, the axis just as 0 axis = 0; } else { x_dims = x.dims(); if (axis < 0) axis += x_dims.size(); } auto& dev_ctx = ctx.template device_context(); #define CALL_ARG_MINMAX_FUNCTOR(rank) \ ArgMinMaxFunctor \ functor##rank; \ functor##rank(dev_ctx, x, &out, x_dims, axis, keepdims) switch (x_dims.size()) { case 1: CALL_ARG_MINMAX_FUNCTOR(1); break; case 2: CALL_ARG_MINMAX_FUNCTOR(2); break; case 3: CALL_ARG_MINMAX_FUNCTOR(3); break; case 4: CALL_ARG_MINMAX_FUNCTOR(4); break; case 5: CALL_ARG_MINMAX_FUNCTOR(5); break; case 6: CALL_ARG_MINMAX_FUNCTOR(6); break; default: PADDLE_THROW( "%s operator doesn't supports tensors whose ranks are greater " "than 6.", (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax")); break; #undef CALL_ARG_MINMAX_FUNCTOR } } }; template class ArgMinMaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dtype = ctx.Attr("dtype"); if (dtype < 0) { framework::VisitDataType( static_cast( framework::proto::VarType::INT64), VisitDataArgMinMaxFunctor(ctx)); return; } framework::VisitDataType( static_cast(dtype), VisitDataArgMinMaxFunctor(ctx)); } }; template using ArgMinKernel = ArgMinMaxKernel; template using ArgMaxKernel = ArgMinMaxKernel; class ArgMinMaxOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "arg_min_max"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "arg_min_max"); const auto& x_dims = ctx->GetInputDim("X"); int64_t axis = ctx->Attrs().Get("axis"); bool keepdims = ctx->Attrs().Get("keepdims"); const bool& flatten = ctx->Attrs().Get("flatten"); PADDLE_ENFORCE_GE(axis, -x_dims.size(), platform::errors::InvalidArgument( "'axis'(%d) must be greater than or equal to" " -Rank(X)(%d).", axis, -x_dims.size())); PADDLE_ENFORCE_LT( axis, x_dims.size(), platform::errors::InvalidArgument( "'axis'(%d) must be less than Rank(X)(%d).", axis, x_dims.size())); std::vector vec; if (flatten) { // if is flatten, will return the only on element if (keepdims) { vec.emplace_back(static_cast(1)); } } else { auto x_rank = x_dims.size(); if (axis < 0) axis += x_rank; for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]); if (keepdims) { vec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]); } ctx->SetOutputDim("Out", framework::make_ddim(vec)); } }; class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker { protected: virtual const char* OpName() const = 0; virtual const char* Name() const = 0; public: void Make() override { AddInput("X", "Input tensor."); AddOutput("Out", "Output tensor."); AddAttr("axis", "The axis in which to compute the arg indics."); AddAttr("keepdims", "Keep the dim that to reduce.").SetDefault(false); AddAttr("dtype", "Keep the dim that to reduce.").SetDefault(-1); AddAttr("flatten", "Flatten the input value, and search the min or max indices") .SetDefault(false); AddComment(string::Sprintf(R"DOC( %s Operator. Computes the indices of the %s elements of the input tensor's element along the provided axis. )DOC", OpName(), Name())); } }; class ArgMinOpMaker : public BaseArgMinMaxOpMaker { protected: const char* OpName() const override { return "ArgMin"; } const char* Name() const override { return "min"; } }; class ArgMaxOpMaker : public BaseArgMinMaxOpMaker { protected: const char* OpName() const override { return "ArgMax"; } const char* Name() const override { return "max"; } }; } // namespace operators } // namespace paddle