// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/huber_loss_kernel.h" namespace phi { template struct HuberLossForward { HOSTDEVICE HuberLossForward(const T& delta) : delta(delta) {} HOSTDEVICE T operator()(const T& val) const { T abs_val = std::abs(val); if (abs_val <= delta) { return static_cast(0.5) * val * val; } else { return delta * (abs_val - static_cast(0.5) * delta); } } T delta; }; template void HuberLossKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& label, float delta, DenseTensor* out, DenseTensor* residual) { T delta_ = static_cast(delta); auto& place = *dev_ctx.eigen_device(); auto x = EigenVector::Flatten(input); auto y = EigenVector::Flatten(label); dev_ctx.template Alloc(residual); auto eigen_residual = EigenVector::Flatten(*residual); eigen_residual.device(place) = y - x; dev_ctx.template Alloc(out); auto loss = EigenVector::Flatten(*out); loss.device(place) = eigen_residual.unaryExpr(HuberLossForward(delta_)); } } // namespace phi