/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/operators/transpose_op.h" #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using framework::DataLayout; template class TransposeMKLDNNHandler { public: TransposeMKLDNNHandler(std::vector& dims, // NOLINT std::vector& axis, // NOLINT dnnl::engine engine) : dims_(dims), axis_(axis), logical_axis_(dims.size(), 0), engine_(engine) {} std::shared_ptr AcquireSrcMemory(const MKLDNNMemoryFormat& fmt, void* ptr) { // Make memory descriptor using input format, unless it // cannot be trusted (nchw) then make up memory fmt manually for (size_t i = 0; i < this->logical_axis_.size(); ++i) { this->logical_axis_[i] = i; } auto src_md = fmt != MKLDNNMemoryFormat::nchw ? platform::MKLDNNMemDesc( dims_, platform::MKLDNNGetDataType(), fmt) : Axis2MemoryDesc(dims_, logical_axis_); return std::make_shared(src_md, engine_, ptr); } std::shared_ptr AcquireDstMemory(framework::Tensor* output, platform::Place place) { auto dst_md = Axis2MemoryDesc(dims_, axis_); auto dst_data = output->mutable_data(place, dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireTranspose( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { return std::make_shared(*(src_memory_p), *(dst_memory_p)); } protected: dnnl::memory::desc Axis2MemoryDesc(std::vector& nchw_tz, // NOLINT std::vector& axis // NOLINT ) { size_t ndims = axis.size(); std::vector strides(ndims); unsigned int total_stride = 1; for (int i = ndims - 1; i >= 0; --i) { strides[axis[i]] = total_stride; total_stride *= nchw_tz[axis[i]]; } dnnl::memory::desc mem_d( nchw_tz, platform::MKLDNNGetDataType(), strides); return mem_d; } private: std::vector dims_; std::vector axis_; std::vector logical_axis_; dnnl::engine engine_; }; template class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, paddle::platform::errors::PreconditionNotMet( "Operator DNNL Transpose must use CPUPlace")); auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); std::vector axis = ctx.Attr>("axis"); int ndims = axis.size(); auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); const T* input_data = input->data(); if (ndims == 1) { framework::TensorCopy(*input, input->place(), output); output->set_format(input->format()); return; } auto nchw_tz = phi::vectorize(input->dims()); TransposeMKLDNNHandler handler(nchw_tz, axis, mkldnn_engine); auto transpose_src_memory_p = handler.AcquireSrcMemory( input->format(), platform::to_void_cast(input_data)); auto transpose_dst_memory_p = handler.AcquireDstMemory(output, ctx.GetPlace()); auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p, transpose_src_memory_p); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); transpose_p->execute( astream, *transpose_src_memory_p, *transpose_dst_memory_p); astream.wait(); output->set_layout(DataLayout::kNCHW); output->set_format(MKLDNNMemoryFormat::undef); } }; template class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, paddle::platform::errors::PreconditionNotMet( "Operator DNNL TransposeGrad must use CPUPlace")); auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto* x_grad = ctx.Output(framework::GradVarName("X")); if (!x_grad) return; auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); std::vector axis = ctx.Attr>("axis"); std::vector reversed_axis(axis); int ndims = axis.size(); if (ndims == 1) { framework::TensorCopy(*out_grad, out_grad->place(), x_grad); x_grad->set_format(out_grad->format()); return; } for (size_t i = 0; i < axis.size(); i++) { reversed_axis[axis[i]] = i; } const T* out_grad_data = out_grad->data(); x_grad->mutable_data(ctx.GetPlace()); auto nchw_tz = phi::vectorize(out_grad->dims()); TransposeMKLDNNHandler handler(nchw_tz, reversed_axis, mkldnn_engine); auto transpose_src_memory_p = handler.AcquireSrcMemory( out_grad->format(), platform::to_void_cast(out_grad_data)); auto transpose_dst_memory_p = handler.AcquireDstMemory(x_grad, ctx.GetPlace()); auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p, transpose_src_memory_p); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); transpose_p->execute( astream, *transpose_src_memory_p, *transpose_dst_memory_p); astream.wait(); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, ::paddle::platform::CPUPlace, FP32, ops::kTransposeMKLDNNFP32, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, ::paddle::platform::CPUPlace, U8, ops::kTransposeMKLDNNINT8, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, ::paddle::platform::CPUPlace, S8, ops::kTransposeMKLDNNINT8, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE( transpose2, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kTransposeMKLDNNFP32, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNGradOpKernel); REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNGradOpKernel);