/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/fused/attn_gemm.h" #include "paddle/fluid/operators/fused/fused_gate_attention.h" #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template struct SigmoidMultiplyFunctor { using MPType = typename phi::dtype::MPTypeTrait::Type; MPType one = static_cast(1.0f); // sigmoid(x) = 1 / (1 + exp(-x)) // out = sigmoid(x) * y inline HOSTDEVICE T operator()(T x, T y) const { MPType x_mp = static_cast(x); T sigmoid_out = static_cast(one / (one + exp(-x_mp))); return sigmoid_out * y; } }; template struct SigmoidMultiplyGradFunctor { using MPType = typename phi::dtype::MPTypeTrait::Type; MPType one = static_cast(1.0f); // Gradient of Multiply: // dx = dout * y // dy = dout * x // Gradient of Sigmoid: dx = dout * out * (1 - out) inline HOSTDEVICE phi::Array operator()(const T dout, const T x, T y) const { MPType x_mp = static_cast(x); T sigmoid_out = static_cast(one / (one + exp(-x_mp))); T d_sigmoid_out = dout * y; phi::Array outs; outs[0] = d_sigmoid_out * sigmoid_out * (static_cast(1.0f) - sigmoid_out); // dx outs[1] = dout * sigmoid_out; // dy return outs; } }; template void ComputeMergedQKVMatmulForward(const framework::ExecutionContext &ctx, const GateAttentionConfig &config, const Tensor *query, Tensor *qkv_out) { // query: shape=[batch_size, seq_len_m, seq_len_r, qkv_dim] // qkv_weight: shape=[3, num_heads, head_dim, qkv_dim] // qkv_out: shape=[batch_size, seq_len_m, seq_len_r, 3, num_heads, head_dim] auto *qkv_weight = ctx.Input("QKVWeight"); // qkv_out = GEMM(query, qkv_weight^T) int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = 3 * config.num_heads * config.head_dim; int k = config.q_dim; auto qkv_compute = AttnMatMul(ctx.cuda_device_context(), false, true, m, n, k, false); qkv_compute.ComputeForward(qkv_weight, query, nullptr, qkv_out, nullptr); } template void ComputeMergedQKVMatmulBackward(const framework::ExecutionContext &ctx, const GateAttentionGradConfig &config, const Tensor *query, const Tensor *qkv_out_grad, Tensor *query_grad, bool use_addto) { auto *qkv_weight = ctx.Input("QKVWeight"); auto *qkv_weight_grad = ctx.Output(framework::GradVarName("QKVWeight")); auto &dev_ctx = ctx.template device_context(); dev_ctx.Alloc(qkv_weight_grad, qkv_weight_grad->numel() * sizeof(T)); // Gradient of GEMM(query, qkv_weight) int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = 3 * config.num_heads * config.head_dim; int k = config.q_dim; auto qkv_compute = AttnMatMul(ctx.cuda_device_context(), false, true, m, n, k, false); qkv_compute.ComputeBackward(query, qkv_weight, qkv_out_grad, query_grad, qkv_weight_grad, nullptr, use_addto); } template void ComputeSeparatedQKVMatmulForward(const framework::ExecutionContext &ctx, const GateAttentionConfig &config, const Tensor *query, const Tensor *key, Tensor *query_out, Tensor *key_out, Tensor *value_out) { auto *query_weight = ctx.Input("QueryWeight"); auto *key_weight = ctx.Input("KeyWeight"); auto *value_weight = ctx.Input("ValueWeight"); // query_out = GEMM(query, query_weight) // query: shape=[batch_size, seq_len_m, seq_len_r, q_dim] // query_weight: shape=[q_dim, num_heads, head_dim] // query_out: shape=[batch_size, seq_len_m, seq_len_r, num_heads, head_dim] int q_m = config.batch_size * config.seq_len_m * config.seq_len_r; int q_n = config.num_heads * config.head_dim; int q_k = config.q_dim; auto q_compute = AttnMatMul( ctx.cuda_device_context(), false, false, q_m, q_n, q_k, false); q_compute.ComputeForward(query_weight, query, nullptr, query_out, nullptr); // k_out = GEMM(key, key_weight) // key: shape=[batch_size, seq_len_m, m_size, kv_dim] // key_weight: shape=[kv_dim, num_heads, head_dim] // key_out: shape=[batch_size, seq_len_m, m_size, num_heads, head_dim] int kv_m = config.batch_size * config.seq_len_m * config.m_size; int kv_n = config.num_heads * config.head_dim; int kv_k = config.kv_dim; auto kv_compute = AttnMatMul( ctx.cuda_device_context(), false, false, kv_m, kv_n, kv_k, false); kv_compute.ComputeForward(key_weight, key, nullptr, key_out, nullptr); // value_out = GEMM(value, value_weight) kv_compute.ComputeForward(value_weight, key, nullptr, value_out, nullptr); } template void ComputeSeparatedQKVMatmulBackward(const framework::ExecutionContext &ctx, const GateAttentionGradConfig &config, const Tensor *query, const Tensor *key, const Tensor *query_out_grad, const Tensor *key_out_grad, const Tensor *value_out_grad, Tensor *query_grad, Tensor *key_grad, bool use_addto) { // Gradient of GEMM(key, k_weight) const auto *key_weight = ctx.Input("KeyWeight"); auto *key_weight_grad = ctx.Output(framework::GradVarName("KeyWeight")); auto &dev_ctx = ctx.template device_context(); dev_ctx.Alloc(key_weight_grad, key_weight_grad->numel() * sizeof(T)); int kv_m = config.batch_size * config.seq_len_m * config.m_size; int kv_n = config.num_heads * config.head_dim; int kv_k = config.kv_dim; auto kv_compute = AttnMatMul( ctx.cuda_device_context(), false, false, kv_m, kv_n, kv_k, false); kv_compute.ComputeBackward( key, key_weight, key_out_grad, key_grad, key_weight_grad, nullptr, false); // Gradient of GEMM(value, v_weight) auto *value_weight = ctx.Input("ValueWeight"); auto *value_weight_grad = ctx.Output(framework::GradVarName("ValueWeight")); dev_ctx.Alloc(value_weight_grad, value_weight_grad->numel() * sizeof(T)); kv_compute.ComputeBackward(key, value_weight, value_out_grad, key_grad, value_weight_grad, nullptr, true); // Gradient of GEMM(query, query_weight) const auto *query_weight = ctx.Input("QueryWeight"); auto *query_weight_grad = ctx.Output(framework::GradVarName("QueryWeight")); dev_ctx.Alloc(query_weight_grad, query_weight_grad->numel() * sizeof(T)); int q_m = config.batch_size * config.seq_len_m * config.seq_len_r; int q_n = config.num_heads * config.head_dim; int q_k = config.q_dim; auto q_compute = AttnMatMul( ctx.cuda_device_context(), false, false, q_m, q_n, q_k, false); q_compute.ComputeBackward(query, query_weight, query_out_grad, query_grad, query_weight_grad, nullptr, use_addto); } template void ComputeGatingLinearForward(const framework::ExecutionContext &ctx, const GateAttentionConfig &config, const Tensor *query, const Tensor *fmha_out, Tensor *gate_out) { auto *gate_weight = ctx.Input("GateWeight"); auto *gate_bias = ctx.Input("GateBias"); // The first gate_bias_out stores the result of the multiplication, // and the second gate_bias_out stores the result of the multiplication + // bias. // gate_out = GEMM(query, gate_weight) + gate_bias int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = config.num_heads * config.head_dim; int k = config.q_dim; auto gate_attn_compute = AttnMatMul(ctx.cuda_device_context(), false, false, m, n, k, true); gate_attn_compute.ComputeForward( gate_weight, query, gate_bias, gate_out, gate_out); // gate_out = sigmoid(gate_out) * fmha_out std::vector ins = {gate_out, fmha_out}; std::vector outs = {gate_out}; phi::funcs::ElementwiseKernel( ctx.cuda_device_context(), ins, &outs, SigmoidMultiplyFunctor()); } template void ComputeGatingLinearBackward(const framework::ExecutionContext &ctx, const GateAttentionGradConfig &config, const Tensor *query, const Tensor *fmha_out, const Tensor *gate_out_grad, Tensor *query_grad, Tensor *fmha_out_grad) { const auto *gate_weight = ctx.Input("GateWeight"); const auto *gate_bias = ctx.Input("GateBias"); auto &dev_ctx = ctx.template device_context(); // Re-compute gate_bias_out Tensor gate_bias_out; gate_bias_out.Resize(config.gate_out_dims); dev_ctx.Alloc(&gate_bias_out, gate_bias_out.numel() * sizeof(T)); int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = config.num_heads * config.head_dim; int k = config.q_dim; auto gate_attn_compute = AttnMatMul(ctx.cuda_device_context(), false, false, m, n, k, true); gate_attn_compute.ComputeForward( gate_weight, query, gate_bias, &gate_bias_out, &gate_bias_out); // Gradient of sigmoid(gate_bias_out) * fmha_out // Compute inplace and save gate_bias_out_grad to gate_bias_out. std::vector ins = {gate_out_grad, &gate_bias_out, fmha_out}; std::vector outs = {&gate_bias_out, fmha_out_grad}; phi::funcs::ElementwiseKernel, 2>( ctx.cuda_device_context(), ins, &outs, SigmoidMultiplyGradFunctor()); // Gradient of GEMM(query, gate_weight) + gate_bias auto *gate_weight_grad = ctx.Output(framework::GradVarName("GateWeight")); auto *gate_bias_grad = ctx.Output(framework::GradVarName("GateBias")); dev_ctx.Alloc(gate_weight_grad, gate_weight_grad->numel() * sizeof(T)); dev_ctx.Alloc(gate_bias_grad, gate_bias_grad->numel() * sizeof(T)); gate_attn_compute.ComputeBackward(query, gate_weight, &gate_bias_out, query_grad, gate_weight_grad, gate_bias_grad); } template void ComputeOutputLinearForward(const framework::ExecutionContext &ctx, const GateAttentionConfig &config, const Tensor *fmha_or_gate_out, Tensor *out) { const auto *out_linear_weight = ctx.Input("OutLinearWeight"); const auto *out_linear_bias = ctx.Input("OutLinearBias"); // out = GEMM(fmha_or_gate_out, out_linear_weight) + out_linear_bias int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = config.q_dim; int k = config.num_heads * config.head_dim; auto out_linear_compute = AttnMatMul(ctx.cuda_device_context(), false, false, m, n, k, true); out_linear_compute.ComputeForward( out_linear_weight, fmha_or_gate_out, out_linear_bias, out, out); } template void ComputeOutputLinearBackward(const framework::ExecutionContext &ctx, const GateAttentionGradConfig &config, const Tensor *input, Tensor *input_grad) { auto &dev_ctx = ctx.template device_context(); const auto *out_grad = ctx.Input(framework::GradVarName("Out")); const auto *out_linear_weight = ctx.Input("OutLinearWeight"); auto *out_linear_weight_grad = ctx.Output(framework::GradVarName("OutLinearWeight")); auto *out_linear_bias_grad = ctx.Output(framework::GradVarName("OutLinearBias")); dev_ctx.Alloc(out_linear_weight_grad, out_linear_weight_grad->numel() * sizeof(T)); dev_ctx.Alloc(out_linear_bias_grad, out_linear_bias_grad->numel() * sizeof(T)); int m = config.batch_size * config.seq_len_m * config.seq_len_r; int n = config.q_dim; int k = config.num_heads * config.head_dim; auto out_linear_compute = AttnMatMul(ctx.cuda_device_context(), false, false, m, n, k, true); out_linear_compute.ComputeBackward(input, out_linear_weight, out_grad, input_grad, out_linear_weight_grad, out_linear_bias_grad); } template class FusedGateAttentionOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *query = ctx.Input("Query"); const auto *key = ctx.Input("Key"); const auto *query_weight = ctx.Input("QueryWeight"); const auto *qkv_weight = ctx.Input("QKVWeight"); const auto *src_mask = ctx.Input("SrcMask"); const auto *nonbatched_bias = ctx.Input("NonbatchedBias"); auto *q_transpose_out = ctx.Output("QueryTransposeOut"); auto *k_transpose_out = ctx.Output("KeyTransposeOut"); auto *v_transpose_out = ctx.Output("ValueTransposeOut"); auto *qkv_transpose_out = ctx.Output("QKVTransposeOut"); auto *softmax_out = ctx.Output("SoftmaxOut"); auto *fmha_out = ctx.Output("FMHAOut"); auto *gate_out = ctx.Output("GateOut"); auto *out = ctx.Output("Out"); const bool merge_qkv = ctx.Attr("merge_qkv"); const bool has_gating = ctx.Attr("has_gating"); auto &dev_ctx = ctx.template device_context(); AllocWithDebugInfo(dev_ctx, "softmax_out", softmax_out); AllocWithDebugInfo(dev_ctx, "fmha_out", fmha_out); if (has_gating) { AllocWithDebugInfo(dev_ctx, "gate_out", gate_out); } AllocWithDebugInfo(dev_ctx, "out", out); // When seq_len_r = m_size, q_dim = kv_dim, QKV matmul can be merged. GateAttentionConfig config( dev_ctx, query, key, query_weight, qkv_weight, merge_qkv, has_gating); if (merge_qkv) { PADDLE_ENFORCE_EQ( !key || query == key || query->data() == key->data(), true, platform::errors::InvalidArgument( "key is expected to be nullptr or the same as " "query, but recieved key=%p, query=%p.", key, query)); // 1. Merged QKV Matmul: einsum(nbhqk,nbkhc -> nbqhc) Tensor *qkv_out = config.GetQKVOut(); ComputeMergedQKVMatmulForward(ctx, config, query, qkv_out); AllocWithDebugInfo(dev_ctx, "qkv_transpose_out", qkv_transpose_out); } else { // 1. Separated QKV Matmul Tensor *query_out = config.GetQueryOut(); Tensor *key_out = config.GetKeyOut(); Tensor *value_out = config.GetValueOut(); ComputeSeparatedQKVMatmulForward( ctx, config, query, key, query_out, key_out, value_out); AllocWithDebugInfo(dev_ctx, "q_transpose_out", q_transpose_out); AllocWithDebugInfo(dev_ctx, "k_transpose_out", k_transpose_out); AllocWithDebugInfo(dev_ctx, "v_transpose_out", v_transpose_out); } // 2. FMHA auto fmha_compute = FMHAGateRef(dev_ctx, merge_qkv); fmha_compute.ComputeForward(nonbatched_bias, src_mask, q_transpose_out, k_transpose_out, v_transpose_out, qkv_transpose_out, softmax_out, fmha_out, gate_out, &config); // 3. Gating Linear if (has_gating) { ComputeGatingLinearForward(ctx, config, query, fmha_out, gate_out); } // 4. Output Linear Tensor *fmha_or_gate_out = has_gating ? gate_out : fmha_out; ComputeOutputLinearForward(ctx, config, fmha_or_gate_out, out); } }; template class FusedGateAttentionGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { // forward input const auto *query = ctx.Input("Query"); const auto *key = ctx.Input("Key"); const auto *query_weight = ctx.Input("QueryWeight"); const auto *qkv_weight = ctx.Input("QKVWeight"); // forward output, backward input const auto *q_transpose_out = ctx.Input("QueryTransposeOut"); const auto *k_transpose_out = ctx.Input("KeyTransposeOut"); const auto *v_transpose_out = ctx.Input("ValueTransposeOut"); const auto *qkv_transpose_out = ctx.Input("QKVTransposeOut"); const auto *softmax_out = ctx.Input("SoftmaxOut"); const auto *fmha_out = ctx.Input("FMHAOut"); const auto *gate_out = ctx.Input("GateOut"); // backward output auto *query_grad = ctx.Output(framework::GradVarName("Query")); auto *nonbatched_bias_grad = ctx.Output(framework::GradVarName("NonbatchedBias")); bool has_gating = ctx.Attr("has_gating"); bool merge_qkv = ctx.Attr("merge_qkv"); auto &dev_ctx = ctx.template device_context(); AllocWithDebugInfo(dev_ctx, "query_grad", query_grad); GateAttentionGradConfig config( dev_ctx, query, key, query_weight, qkv_weight, merge_qkv, has_gating); Tensor fmha_out_grad; fmha_out_grad.Resize(config.gate_out_dims); AllocWithDebugInfo(dev_ctx, "fmha_out_grad", &fmha_out_grad); if (has_gating) { // 1. Gradient of Output Linear: out = Linear(gate_out) Tensor gate_out_grad; gate_out_grad.Resize(config.gate_out_dims); AllocWithDebugInfo(dev_ctx, "gate_out_grad", &gate_out_grad); ComputeOutputLinearBackward(ctx, config, gate_out, &gate_out_grad); // 2. Gradient of Gating Linear // Forward: gate_out = Sigmoid(Linear(fmha_out)) * fmha_out ComputeGatingLinearBackward(ctx, config, query, fmha_out, &gate_out_grad, query_grad, &fmha_out_grad); } else { // 1. Gradient of Output Linear: out = Linear(fmha_grad) ComputeOutputLinearBackward(ctx, config, fmha_out, &fmha_out_grad); } // 3. Gradient of FMHA if (nonbatched_bias_grad) { AllocWithDebugInfo( dev_ctx, "nonbatched_bias_grad", nonbatched_bias_grad); } auto fmha_compute = FMHAGateRef(dev_ctx, merge_qkv); fmha_compute.ComputeBackward(q_transpose_out, k_transpose_out, v_transpose_out, qkv_transpose_out, softmax_out, &fmha_out_grad, nullptr, nonbatched_bias_grad, &config); bool use_addto = has_gating ? true : false; if (merge_qkv) { // 4. Gradient of Merged QKV Matmul Tensor *qkv_out_grad = config.GetQKVOutGrad(); ComputeMergedQKVMatmulBackward( ctx, config, query, qkv_out_grad, query_grad, use_addto); } else { // 4. Gradient of Separated QKV Matmul auto *key_grad = ctx.Output(framework::GradVarName("Key")); if (key_grad) { AllocWithDebugInfo(dev_ctx, "key_grad", key_grad); } Tensor *query_out_grad = config.GetQueryOutGrad(); Tensor *key_out_grad = config.GetKeyOutGrad(); Tensor *value_out_grad = config.GetValueOutGrad(); ComputeSeparatedQKVMatmulBackward(ctx, config, query, key, query_out_grad, key_out_grad, value_out_grad, query_grad, key_grad, use_addto); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; #ifdef PADDLE_WITH_HIP REGISTER_OP_CUDA_KERNEL(fused_gate_attention, ops::FusedGateAttentionOpKernel, ops::FusedGateAttentionOpKernel, ops::FusedGateAttentionOpKernel); REGISTER_OP_CUDA_KERNEL(fused_gate_attention_grad, ops::FusedGateAttentionGradKernel, ops::FusedGateAttentionGradKernel, ops::FusedGateAttentionGradKernel); #else REGISTER_OP_CUDA_KERNEL(fused_gate_attention, ops::FusedGateAttentionOpKernel, ops::FusedGateAttentionOpKernel, ops::FusedGateAttentionOpKernel, ops::FusedGateAttentionOpKernel); REGISTER_OP_CUDA_KERNEL(fused_gate_attention_grad, ops::FusedGateAttentionGradKernel, ops::FusedGateAttentionGradKernel, ops::FusedGateAttentionGradKernel, ops::FusedGateAttentionGradKernel); #endif