/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/bce_loss_op.h" #include "paddle/fluid/operators/math.h" #include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/gpu_launch_config.h" #include "paddle/fluid/platform/hostdevice.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template __global__ void GPUBCELossForward(const T* x_data, const T* label_data, T* out_data, const int in_numel) { CUDA_KERNEL_LOOP(i, in_numel) { T x = x_data[i]; T label = label_data[i]; T one = static_cast(1.); T neg_100 = static_cast(-100.); PADDLE_ENFORCE( (x >= static_cast(0)) && (x <= one), "Input is expected to be within the interval [0, 1], but recieved %f.", x); T term1 = max(real_log(x), neg_100); T term2 = max(real_log(one - x), neg_100); out_data[i] = ((label - one) * term2) - (label * term1); } } template __global__ void GPUBCELossBackward(const T* x_data, const T* label_data, const T* dout_data, T* dx_data, const int in_numel) { CUDA_KERNEL_LOOP(i, in_numel) { T x = x_data[i]; T label = label_data[i]; T dout = dout_data[i]; T one = static_cast(1.); T eps = static_cast(1e-12); T term1 = max((one - x) * x, eps); dx_data[i] = dout * (x - label) / term1; } } template class BCELossCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* out = ctx.Output("Out"); const auto* x_data = x->data(); auto* out_data = out->mutable_data(ctx.GetPlace()); auto x_numel = x->numel(); auto& dev_ctx = ctx.cuda_device_context(); platform::GpuLaunchConfig config = platform::GetGpuLaunchConfig1D(dev_ctx, x_numel); GPUBCELossForward<<>>(x_data, labels->data(), out_data, x_numel); } }; template class BCELossGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); int x_numel = x->numel(); auto* dx_data = dx->mutable_data(ctx.GetPlace()); auto& dev_ctx = ctx.cuda_device_context(); platform::GpuLaunchConfig config = platform::GetGpuLaunchConfig1D(dev_ctx, x_numel); GPUBCELossBackward<<>>( x->data(), labels->data(), dout->data(), dx_data, x_numel); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( bce_loss, ops::BCELossCUDAKernel, ops::BCELossCUDAKernel); REGISTER_OP_CUDA_KERNEL( bce_loss_grad, ops::BCELossGradCUDAKernel, ops::BCELossGradCUDAKernel);