# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import six import tarfile import numpy as np import collections from paddle.io import Dataset from paddle.dataset.common import _check_exists_and_download __all__ = [] URL = 'https://dataset.bj.bcebos.com/imikolov%2Fsimple-examples.tgz' MD5 = '30177ea32e27c525793142b6bf2c8e2d' class Imikolov(Dataset): """ Implementation of imikolov dataset. Args: data_file(str): path to data tar file, can be set None if :attr:`download` is True. Default None data_type(str): 'NGRAM' or 'SEQ'. Default 'NGRAM'. window_size(int): sliding window size for 'NGRAM' data. Default -1. mode(str): 'train' 'test' mode. Default 'train'. min_word_freq(int): minimal word frequence for building word dictionary. Default 50. download(bool): whether to download dataset automatically if :attr:`data_file` is not set. Default True Returns: Dataset: instance of imikolov dataset Examples: .. code-block:: python import paddle from paddle.text.datasets import Imikolov class SimpleNet(paddle.nn.Layer): def __init__(self): super(SimpleNet, self).__init__() def forward(self, src, trg): return paddle.sum(src), paddle.sum(trg) imikolov = Imikolov(mode='train', data_type='SEQ', window_size=2) for i in range(10): src, trg = imikolov[i] src = paddle.to_tensor(src) trg = paddle.to_tensor(trg) model = SimpleNet() src, trg = model(src, trg) print(src.numpy().shape, trg.numpy().shape) """ def __init__(self, data_file=None, data_type='NGRAM', window_size=-1, mode='train', min_word_freq=50, download=True): assert data_type.upper() in ['NGRAM', 'SEQ'], \ "data type should be 'NGRAM', 'SEQ', but got {}".format(data_type) self.data_type = data_type.upper() assert mode.lower() in ['train', 'test'], \ "mode should be 'train', 'test', but got {}".format(mode) self.mode = mode.lower() self.window_size = window_size self.min_word_freq = min_word_freq self.data_file = data_file if self.data_file is None: assert download, "data_file is not set and downloading automatically disabled" self.data_file = _check_exists_and_download(data_file, URL, MD5, 'imikolov', download) # Build a word dictionary from the corpus self.word_idx = self._build_work_dict(min_word_freq) # read dataset into memory self._load_anno() def word_count(self, f, word_freq=None): if word_freq is None: word_freq = collections.defaultdict(int) for l in f: for w in l.strip().split(): word_freq[w] += 1 word_freq[''] += 1 word_freq[''] += 1 return word_freq def _build_work_dict(self, cutoff): train_filename = './simple-examples/data/ptb.train.txt' test_filename = './simple-examples/data/ptb.valid.txt' with tarfile.open(self.data_file) as tf: trainf = tf.extractfile(train_filename) testf = tf.extractfile(test_filename) word_freq = self.word_count(testf, self.word_count(trainf)) if '' in word_freq: # remove for now, since we will set it as last index del word_freq[''] word_freq = [ x for x in six.iteritems(word_freq) if x[1] > self.min_word_freq ] word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0])) words, _ = list(zip(*word_freq_sorted)) word_idx = dict(list(zip(words, six.moves.range(len(words))))) word_idx[''] = len(words) return word_idx def _load_anno(self): self.data = [] with tarfile.open(self.data_file) as tf: filename = './simple-examples/data/ptb.{}.txt'.format(self.mode) f = tf.extractfile(filename) UNK = self.word_idx[''] for l in f: if self.data_type == 'NGRAM': assert self.window_size > -1, 'Invalid gram length' l = [''] + l.strip().split() + [''] if len(l) >= self.window_size: l = [self.word_idx.get(w, UNK) for w in l] for i in six.moves.range(self.window_size, len(l) + 1): self.data.append(tuple(l[i - self.window_size:i])) elif self.data_type == 'SEQ': l = l.strip().split() l = [self.word_idx.get(w, UNK) for w in l] src_seq = [self.word_idx['']] + l trg_seq = l + [self.word_idx['']] if self.window_size > 0 and len(src_seq) > self.window_size: continue self.data.append((src_seq, trg_seq)) else: assert False, 'Unknow data type' def __getitem__(self, idx): return tuple([np.array(d) for d in self.data[idx]]) def __len__(self): return len(self.data)