// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/reverse_kernel.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" namespace phi { template void ReverseArrayKernel(const Context& dev_ctx, const TensorArray& x, const IntArray& axis, TensorArray* out) { PADDLE_ENFORCE_EQ( x.size(), out->size(), phi::errors::InvalidArgument("The input size(%d) and output size(%d) of " "ReverseArrayKernel is different.", x.size(), out->size())); for (size_t offset = 0; offset < x.size(); ++offset) { auto& x_tensor = x.at(offset); PADDLE_ENFORCE_GT( x_tensor.memory_size(), 0, phi::errors::PreconditionNotMet( "The input LoDTensorArray X[%d] holds no memory.", offset)); auto out_offset = x.size() - offset - 1; auto& out_tensor = out->at(out_offset); out_tensor.set_lod(x_tensor.lod()); phi::Copy( dev_ctx, x_tensor, dev_ctx.GetPlace(), false, &out_tensor); } } } // namespace phi PD_REGISTER_KERNEL(reverse_array, CPU, ALL_LAYOUT, phi::ReverseArrayKernel, int, uint8_t, int64_t, bool, float, double) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(reverse_array, GPU, ALL_LAYOUT, phi::ReverseArrayKernel, int, uint8_t, int64_t, bool, float, double) {} #endif