# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np import os import shutil import unittest import math def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, bias_attr=False) return fluid.layers.batch_norm( input=conv, act=act, ) def shortcut(input, ch_out, stride, is_first): ch_in = input.shape[1] if ch_in != ch_out or stride != 1 or is_first == True: return conv_bn_layer(input, ch_out, 1, stride) else: return input def bottleneck_block(input, num_filters, stride): conv0 = conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu') conv2 = conv_bn_layer( input=conv1, num_filters=num_filters * 4, filter_size=1, act=None) short = shortcut(input, num_filters * 4, stride, is_first=False) return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def basic_block(input, num_filters, stride, is_first): conv0 = conv_bn_layer( input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride) conv1 = conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, act=None) short = shortcut(input, num_filters, stride, is_first) return fluid.layers.elementwise_add(x=short, y=conv1, act='relu') def build_network(input, layers=50, class_dim=1000): supported_layers = [18, 34, 50, 101, 152] assert layers in supported_layers depth = None if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] with fluid.device_guard("cpu"): conv = conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') if layers >= 50: for block in range(len(depth)): with fluid.device_guard("gpu:0"): for i in range(depth[block]): conv = bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1) with fluid.device_guard("gpu:0"): pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) else: for block in range(len(depth)): with fluid.device_guard("gpu:0"): for i in range(depth[block]): conv = basic_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, is_first=block == i == 0) with fluid.device_guard("gpu:0"): pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out class TestPipeline(unittest.TestCase): """ TestCases for Pipeline Training. """ def _run(self, debug): main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): with fluid.device_guard("cpu"): image = fluid.layers.data( name="image", shape=[3, 224, 224], dtype="float32") label = fluid.layers.data( name="label", shape=[1], dtype="int64") data_loader = fluid.io.DataLoader.from_generator( feed_list=[image, label], capacity=64, use_double_buffer=True, iterable=False) fc = build_network(image, layers=50) with fluid.device_guard("gpu:0"): out, prob = fluid.layers.softmax_with_cross_entropy( logits=fc, label=label, return_softmax=True) loss = fluid.layers.mean(out) acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5) base_lr = 0.1 passes = [30, 60, 80, 90] total_images = 1281167 steps_per_pass = total_images // 128 bd = [steps_per_pass * p for p in passes] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr) optimizer = fluid.optimizer.MomentumOptimizer( lr_val, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) optimizer = fluid.optimizer.PipelineOptimizer( optimizer, num_microbatches=2) optimizer.minimize(loss) def train_reader(): for _ in range(4): img = np.random.random(size=[3, 224, 224]).astype('float32') label = np.random.random(size=[1]).astype('int64') yield img, label data_loader.set_sample_generator(train_reader, batch_size=1) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) data_loader.start() exe.train_from_dataset(main_prog, debug=debug) def test_pipeline(self): self._run(False) self._run(True) def test_pipeline_noneoptimizer(self): with fluid.device_guard("gpu:0"): x = fluid.layers.data( name='x', shape=[1], dtype='int64', lod_level=0) y = fluid.layers.data( name='y', shape=[1], dtype='int64', lod_level=0) emb_x = layers.embedding( input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10, 2], is_sparse=False) fc = layers.fc(input=emb_x, name="fc", size=1, num_flatten_dims=1, bias_attr=False) loss = layers.reduce_mean(fc) optimizer = fluid.optimizer.SGD(learning_rate=0.5) with self.assertRaises(ValueError): optimizer = fluid.optimizer.PipelineOptimizer( dict(), num_microbatches=2) if __name__ == '__main__': unittest.main()