/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/platform/transform.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template class ClipByNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto max_norm = context.Attr("max_norm"); auto in_var = context.InputVar("X"); auto* output = context.Output("Out"); output->mutable_data(context.GetPlace()); const Tensor* input = nullptr; if (in_var->IsType()) { input = context.Input("X"); } else if (in_var->IsType()) { auto* x = context.Input("X"); // merge ids in selected rows first math::scatter::MergeAdd merge_func; auto* merged_input = const_cast(context.scope()) .Var() ->GetMutable(); merge_func(context.template device_context(), *x, merged_input); input = &(merged_input->value()); } else { PADDLE_THROW("Unexpected branch, input variable type is %s", in_var->Type().name()); } PADDLE_ENFORCE_NOT_NULL(input); auto x = EigenVector::Flatten(*input); auto out = EigenVector::Flatten(*output); auto x_norm = x.square().sum().sqrt(); auto& place = *context.template device_context().eigen_device(); auto temp = (x_norm <= max_norm).template cast().eval(); auto scaling = temp + (static_cast(1) - temp) * max_norm / x_norm; Eigen::array one_dim{{1}}; Eigen::DSizes m_dsize(input->numel()); out.device(place) = x * scaling.reshape(one_dim).broadcast(m_dsize); } }; } // namespace operators } // namespace paddle