# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from paddle.fluid import Program, program_guard class TestLodResetOpByAttr(OpTest): def setUp(self): self.op_type = "lod_reset" x = np.random.random((10, 20)).astype("float64") lod = [[3, 2, 5]] # target_offset_lod and target_lod are the same lod info represented # in offset-based format and length-based format, respectively. target_offset_lod = [0, 7, 10] target_lod = [7, 3] self.inputs = {'X': (x, lod)} # The `target_lod` attribute is still based on offset self.attrs = {'target_lod': target_offset_lod} self.outputs = {'Out': (x, [target_lod])} def test_check_output(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_output(check_dygraph=False) def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_grad(["X"], "Out", check_dygraph=False) class TestLodResetOpByInput(OpTest): def setUp(self): self.op_type = "lod_reset" x = np.random.random((10, 20)).astype("float64") lod = [[3, 2, 5]] # target_offset_lod and target_lod are the same lod info represented # in offset-based format and length-based format, respectively. target_offset_lod = [0, 4, 7, 10] target_lod = [4, 3, 3] self.inputs = { 'X': (x, lod), 'Y': np.array([target_offset_lod]).astype('int32') } self.outputs = {'Out': (x, [target_lod])} def test_check_output(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_output(check_dygraph=False) def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_grad(["X"], "Out", no_grad_set=set("Y"), check_dygraph=False) class TestLodResetOpBoth(OpTest): def setUp(self): self.op_type = "lod_reset" x = np.random.random((10, 20)).astype("float64") lod = [[3, 2, 5]] target_offset_lod_attr = [0, 7, 10] target_offset_lod_in = [0, 4, 7, 10] target_lod_in = [4, 3, 3] self.inputs = { 'X': (x, lod), 'Y': np.array(target_offset_lod_in).astype('int32') } self.attrs = {'target_lod': target_offset_lod_attr} self.outputs = {'Out': (x, [target_lod_in])} def test_check_output(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_output(check_dygraph=False) def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_grad(["X"], "Out", no_grad_set=set("Y"), check_dygraph=False) class TestLodResetOpYIsLoDTensor(OpTest): def setUp(self): self.op_type = "lod_reset" x = np.random.random((10, 20)).astype("float64") lod = [[3, 2, 5]] y = np.random.random((10, 10)).astype("float64") target_lod = [[4, 3, 3]] self.inputs = {'X': (x, lod), 'Y': (y, target_lod)} self.outputs = {'Out': (x, target_lod)} def test_check_output(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_output(check_dygraph=False) def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_grad(["X"], "Out", no_grad_set=set("Y"), check_dygraph=False) class TestLodAppendOpByAttr(OpTest): def setUp(self): self.op_type = "lod_reset" x = np.random.random((10, 20)).astype("float64") lod = [[3, 2, 5]] # target_offset_lod and target_lod are the same lod info represented # in offset-based format and length-based format, respectively. target_offset_lod = [i for i in range(11)] self.inputs = {'X': (x, lod)} out_lod = [[3, 2, 5], [1] * 10] # The `target_lod` attribute is still based on offset self.attrs = {'target_lod': target_offset_lod, 'append': True} self.outputs = {'Out': (x, out_lod)} def test_check_output(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_output(check_dygraph=False) def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode self.check_grad(["X"], "Out", check_dygraph=False) class TestLodResetOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): def test_Variable(): # The input must be Variable. x1 = fluid.create_lod_tensor( np.ones([6]), [3, 3], fluid.CPUPlace()) y1 = fluid.create_lod_tensor( np.ones([6]), [2, 2, 2], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.lod_reset, [x1, y1]) def test_type(): # dtype must be float32 or float64 or int32 or int64 x2 = fluid.layers.data(shape=[4], dtype='uint8', name='x2') y2 = fluid.layers.data( shape=[4], dtype='uint8', name='x2', lod_level=2) self.assertRaises(TypeError, fluid.layers.lod_reset, [x2, y2]) def test_type2(): # dtype must be int32 or int64 x3 = fluid.layers.data(shape=[4], dtype='float32', name='x3') y3 = fluid.layers.data( shape=[4], dtype='float32', name='x3', lod_level=0) self.assertRaises(TypeError, fluid.layers.lod_reset, [x3, y3]) if __name__ == '__main__': unittest.main()