# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import contextlib import unittest import numpy as np import six import pickle import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dygraph from paddle.fluid import core from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC from paddle.fluid.dygraph.base import to_variable from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase class SimpleImgConvPool(fluid.dygraph.Layer): def __init__(self, name_scope, num_channels, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, param_attr=None, bias_attr=None): super(SimpleImgConvPool, self).__init__(name_scope) self._conv2d = Conv2D( self.full_name(), num_filters=num_filters, filter_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, param_attr=None, bias_attr=None, use_cudnn=use_cudnn) self._pool2d = Pool2D( self.full_name(), pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, use_cudnn=use_cudnn) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.dygraph.Layer): def __init__(self, name_scope): super(MNIST, self).__init__(name_scope) self._simple_img_conv_pool_1 = SimpleImgConvPool( self.full_name(), 1, 20, 5, 2, 2, act="relu") self._simple_img_conv_pool_2 = SimpleImgConvPool( self.full_name(), 20, 50, 5, 2, 2, act="relu") pool_2_shape = 50 * 4 * 4 SIZE = 10 scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5 self._fc = FC(self.full_name(), 10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale)), act="softmax") def forward(self, inputs, label): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) cost = self._fc(x) loss = fluid.layers.cross_entropy(cost, label) avg_loss = fluid.layers.mean(loss) return avg_loss class TestMnist(TestParallelDyGraphRunnerBase): def get_model(self): model = MNIST("mnist") train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=2, drop_last=True) opt = fluid.optimizer.Adam(learning_rate=1e-3) return model, train_reader, opt def run_one_loop(self, model, opt, data): batch_size = len(data) dy_x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype('float32') y_data = np.array( [x[1] for x in data]).astype('int64').reshape(batch_size, 1) img = to_variable(dy_x_data) label = to_variable(y_data) label.stop_gradient = True avg_loss = model(img, label) return avg_loss if __name__ == "__main__": runtime_main(TestMnist)