/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/operators/ngraph/ngraph_bridge.h" #include "paddle/fluid/operators/ngraph/ngraph_engine.h" namespace paddle { namespace operators { static ngraph::Shape Ddim2Shape(const framework::DDim& dims) { ngraph::Shape sp; for (int i = 0; i < dims.size(); ++i) { int k = dims[i]; k = k == 0 ? 1 : k; sp.push_back(k); } return sp; } static std::map pd2ng_type_map = { {framework::proto::VarType::FP32, ngraph::element::f32}, {framework::proto::VarType::FP64, ngraph::element::f64}, {framework::proto::VarType::INT32, ngraph::element::i32}, {framework::proto::VarType::INT64, ngraph::element::i64}, {framework::proto::VarType::BOOL, ngraph::element::boolean}, }; std::unordered_map> NgraphEngine::func_cache_ = {}; std::shared_ptr NgraphEngine::backend_ = ngraph::runtime::Backend::create("CPU"); static std::vector> NgraphOpIntervals( framework::BlockDesc* block) { std::vector> intervals; auto ops = block->AllOps(); int size = ops.size(); int left = 0; while (left < size && ops.at(left)->Type() != framework::kFeedOpType) { ++left; } if (left == size) { return intervals; } while (left < size && ops.at(left)->Type() == framework::kFeedOpType) { ++left; } int right = left; while (right < size && ops.at(right)->Type() != framework::kFetchOpType) { ++right; } if (right == size) { return intervals; } if (left >= right) return intervals; // (left, right - 1) represents indices between feed and fetch int pivot = left; while (pivot < right) { auto op_type = ops.at(pivot)->Type(); if (NgraphBridge::isRegister(op_type)) { ++pivot; } else { int start = pivot, end = start; while (pivot < right && (!NgraphBridge::isRegister(ops.at(pivot)->Type()))) { ++pivot; ++end; } std::vector interval = {start, end}; intervals.push_back(interval); } } // end while return intervals; } static void SubstituteNgraphOp(framework::BlockDesc* block, std::string block_str, std::vector interval) { framework::ProgramDesc program; block->RemoveOp(interval.at(0), interval.at(1)); auto* ng_op = block->InsertOp(interval.at(0)); ng_op->SetType("ngraph_engine"); ng_op->SetAttr("interval", interval); ng_op->SetAttr("graph", block_str); } // TODO(baojun-nervana): Move EnableNgraph to compile time per PR #15089 void NgraphEngine::EnableNgraph(const framework::ProgramDesc& program) { #ifdef PADDLE_WITH_NGRAPH VLOG(4) << "use_ngraph=True"; for (size_t bid = 0; bid < program.Size(); ++bid) { // TODO(baojun-nervana): Remove the const_cast auto* block = const_cast(program).MutableBlock(bid); std::string block_str = block->Proto()->SerializeAsString(); auto intervals = NgraphOpIntervals(block); for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) { SubstituteNgraphOp(block, block_str, *it); } } #else LOG(WARNING) << "'NGRAPH' is not supported, Please re-compile with WITH_NGRAPH option"; #endif } NgraphEngine::NgraphEngine(const framework::Scope& scope, const platform::Place& place, const std::string& serialized_graph, const std::vector& interval) : scope_(scope), place_(place) { var_in_node_map_ = std::make_shared< std::unordered_map>>(); var_node_map_ = std::make_shared< std::unordered_map>>(); func_cache_key_ = std::to_string(interval[0]) + std::to_string(interval[1]) + serialized_graph; framework::proto::BlockDesc bdesc; bdesc.ParseFromString(serialized_graph); framework::BlockDesc block(nullptr, &bdesc); Prepare(block, interval); BuildNgIO(); GetNgFunction(); } void NgraphEngine::Prepare(const framework::BlockDesc& block, const std::vector& interval) { for (auto& var : block.AllVars()) { if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS || var->GetType() == framework::proto::VarType::LOD_TENSOR || var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) { continue; } auto var_name = var->Name(); if (var->Name() == framework::kEmptyVarName) { continue; } if (var_name != framework::kFeedOpType && var_name != framework::kFetchOpType) { auto pd_type = var->GetDataType(); if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) { PADDLE_THROW("Data type of var %s not found in pd2ng_type_map", var_name); } var_type_map_[var_name] = pd2ng_type_map[pd_type]; } if (var->Persistable()) { persistables_.insert(var->Name()); } } auto ops_desc = block.AllOps(); int idx = interval[0]; while (idx < interval[1]) { auto op_desc = ops_desc.at(idx); auto op = framework::OpRegistry::CreateOp(*op_desc); fused_ops_.push_back(std::move(op)); ++idx; } while (ops_desc.at(idx)->Type() != framework::kFetchOpType) { auto op_desc = ops_desc.at(idx); for (auto& var_name_item : op_desc->Inputs()) { for (auto& var_name : var_name_item.second) { post_op_inputs_.insert(var_name); } } ++idx; } while (idx < static_cast(ops_desc.size()) && ops_desc.at(idx)->Type() == framework::kFetchOpType) { std::string fetch_target_name = ops_desc.at(idx)->Input("X")[0]; fetches_.insert(fetch_target_name); ++idx; } if (ops_desc.at(interval.at(0) - 1)->Type() == framework::kFeedOpType && ops_desc.at(interval.at(1))->Type() == framework::kFetchOpType) { ng_op_state_ = OpState::FULL; } for (auto* op_desc : ops_desc) { if (op_desc->Type().find("_grad") != std::string::npos) { ng_op_state_ = ng_op_state_ == OpState::FULL ? OpState::FULL_TRAIN : OpState::PARTIAL_TRAIN; break; } } if (ng_op_state_ != OpState::FULL_TRAIN && ng_op_state_ != OpState::PARTIAL_TRAIN) { ng_op_state_ = ng_op_state_ == OpState::FULL ? OpState::FULL_TEST : OpState::PARTIAL_TEST; } } void NgraphEngine::GetNgInputShape( std::shared_ptr op) { framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_); op->RuntimeInferShape(scope_, place_, ctx); for (auto& var_name_item : op->Inputs()) { for (auto& var_name : var_name_item.second) { auto* var = scope_.FindVar(var_name); if (var && var->IsType()) { auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var); auto sp = Ddim2Shape(tensor_pd->dims()); if (std::find(var_in_.begin(), var_in_.end(), var_name) != var_in_.end()) { if (var_node_map_->find(var_name) == var_node_map_->end()) { // auto ng_type = pd2ng_type_map.at(GetDataTypeOfVar(var)); auto ng_type = var_type_map_.at(var_name); auto prm = std::make_shared(ng_type, sp, true); (*var_node_map_)[var_name] = prm; (*var_in_node_map_)[var_name] = prm; } } } } } } void NgraphEngine::BuildNgNodes() { for (auto& op : fused_ops_) { for (auto& var_name_item : op->Outputs()) { for (auto& var_name : var_name_item.second) { if (var_node_map_->find(var_name) == var_node_map_->end()) { auto* var = scope_.FindVar(var_name); if (var && var->IsType()) { auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var); auto& ddim = tensor_pd->dims(); auto ng_shape = Ddim2Shape(ddim); auto ng_type = var_type_map_.at(var_name); auto prm = std::make_shared(ng_type, ng_shape, true); (*var_node_map_)[var_name] = prm; } } } } } NgraphBridge ngb(var_node_map_); for (auto& op : fused_ops_) { ngb.BuildNgNode(op); } } void NgraphEngine::BuildNgIO() { std::unordered_set inputs; std::unordered_set outputs; for (auto& op : fused_ops_) { for (auto& var_name_item : op->Inputs()) { for (auto& var_name : var_name_item.second) { inputs.insert(var_name); const bool is_output = outputs.find(var_name) != outputs.end(); if (!is_output && std::find(var_in_.begin(), var_in_.end(), var_name) == var_in_.end()) { // fill var_in here to keep lhs and rhs order var_in_.push_back(var_name); } } } if (op->Type() != "fill_constant") { GetNgInputShape(op); } for (auto& var_name_item : op->Outputs()) { PADDLE_ENFORCE_LE(var_name_item.second.size(), 1, "op %s has more than 1 output - Not handling yet", op->Type()); for (auto& var_name : var_name_item.second) { outputs.insert(var_name); } } } // var_out.clear(); for (auto& op : fused_ops_) { for (auto& var_name_item : op->Outputs()) { PADDLE_ENFORCE_LE(var_name_item.second.size(), 1, "op %s has more than 1 output - Not handling yet", op->Type()); for (auto& var_name : var_name_item.second) { switch (ng_op_state_) { case OpState::PARTIAL_TEST: if (post_op_inputs_.find(var_name) != post_op_inputs_.end() || fetches_.find(var_name) != fetches_.end()) { var_out_.push_back(var_name); } break; case OpState::FULL_TEST: if (fetches_.find(var_name) != fetches_.end()) { var_out_.push_back(var_name); } break; case OpState::PARTIAL_TRAIN: if (fetches_.find(var_name) != fetches_.end() || post_op_inputs_.find(var_name) != post_op_inputs_.end() || persistables_.find(var_name) != persistables_.end()) { var_out_.push_back(var_name); } break; case OpState::FULL_TRAIN: if (fetches_.find(var_name) != fetches_.end() || persistables_.find(var_name) != persistables_.end()) { var_out_.push_back(var_name); } break; default: var_out_.push_back(var_name); } } } } } void NgraphEngine::BuildNgFunction() { BuildNgNodes(); ngraph_function_ = nullptr; ngraph::NodeVector func_outputs; ngraph::ParameterVector func_inputs; for (auto& vo : var_out_) { func_outputs.push_back(var_node_map_->at(vo)); } for (auto& vi : var_in_) { std::shared_ptr prm = std::dynamic_pointer_cast( var_in_node_map_->at(vi)); func_inputs.push_back(prm); } ngraph_function_ = std::make_shared(func_outputs, func_inputs); } void NgraphEngine::GetNgFunction() { bool cache_on = true; if (cache_on) { std::string input_shape_str; for (auto& var_name : var_in_) { auto shape = var_node_map_->at(var_name)->get_shape(); for (size_t i = 0; i < shape.size(); ++i) { input_shape_str += std::to_string(shape.at(i)); } } func_cache_key_ = input_shape_str + func_cache_key_; if (func_cache_.find(func_cache_key_) != func_cache_.end()) { ngraph_function_ = func_cache_.at(func_cache_key_); } else { BuildNgFunction(); func_cache_[func_cache_key_] = ngraph_function_; } } else { BuildNgFunction(); } } void NgraphEngine::Run(const framework::Scope& scope, const platform::Place& place) const { std::vector> t_in; std::vector> t_out; for (size_t i = 0; i < var_in_.size(); ++i) { auto vi = var_in_.at(i); auto sp = var_node_map_->at(vi)->get_shape(); std::shared_ptr ti; auto* var = scope.FindVar(vi); if (var && var->IsType()) { auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var); PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()), "Ensure ngraph tensor layout align with paddle tensor"); auto ng_type = var_type_map_.at(vi); if (ng_type == ngraph::element::f32) { auto pd_arr = tensor_pd->mutable_data(place); ti = backend_->create_tensor(ngraph::element::f32, sp, pd_arr); } else if (ng_type == ngraph::element::i32) { const int* arr = tensor_pd->data(); ti = backend_->create_tensor(ngraph::element::i32, sp, const_cast(arr)); } else if (ng_type == ngraph::element::i64) { auto pd_arr = tensor_pd->mutable_data(place); ti = backend_->create_tensor(ngraph::element::i64, sp, pd_arr); } else if (ng_type == ngraph::element::f64) { auto pd_arr = tensor_pd->mutable_data(place); ti = backend_->create_tensor(ngraph::element::f64, sp, pd_arr); } else if (ng_type == ngraph::element::boolean) { auto pd_arr = tensor_pd->mutable_data(place); ti = backend_->create_tensor(ngraph::element::boolean, sp, pd_arr); } else { PADDLE_THROW("Data type not handling for var %s", vi); } } else { PADDLE_THROW("Cannot find var or tensor with var name %s", vi); } bool is_test = (ng_op_state_ == OpState::PARTIAL_TEST || ng_op_state_ == OpState::FULL_TEST) ? true : false; bool is_persistable = (persistables_.find(vi) != persistables_.end()) ? true : false; if (is_test && is_persistable) { ti->set_stale(false); } t_in.push_back(ti); } for (size_t i = 0; i < var_out_.size(); ++i) { auto vo = var_out_[i]; auto* var = scope.FindVar(vo); std::shared_ptr to; if (var && var->IsType()) { auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var); auto dd = tensor_pd->dims(); ngraph::Shape sp = Ddim2Shape(dd); auto ng_type = var_type_map_.at(vo); if (ng_type == ngraph::element::f32) { auto pd_arr = tensor_pd->mutable_data(place); to = backend_->create_tensor(ng_type, sp, pd_arr); } else if (ng_type == ngraph::element::i64) { auto pd_arr = tensor_pd->mutable_data(place); to = backend_->create_tensor(ng_type, sp, pd_arr); } else if (ng_type == ngraph::element::i32) { auto pd_arr = tensor_pd->mutable_data(place); to = backend_->create_tensor(ng_type, sp, pd_arr); } else if (ng_type == ngraph::element::f64) { auto pd_arr = tensor_pd->mutable_data(place); to = backend_->create_tensor(ng_type, sp, pd_arr); } else if (ng_type == ngraph::element::boolean) { auto pd_arr = tensor_pd->mutable_data(place); to = backend_->create_tensor(ng_type, sp, pd_arr); } else { PADDLE_THROW("Data type not handled in for var %s", vo); } t_out.push_back(to); } else { PADDLE_THROW("Cannot find var or tensor with var name %s", vo); } } backend_->call(backend_->compile(ngraph_function_), t_out, t_in); } // NgraphEngine::Run } // namespace operators } // namespace paddle