// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/analysis_predictor.h" #include #include #include // NOLINT #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/tests/api/tester_helper.h" DEFINE_string(dirname, "", "dirname to tests."); namespace paddle { TEST(AnalysisPredictor, analysis_off) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(false); auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); // Without analysis, the scope_ and sub_scope_ are created by predictor // itself. ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // ir is turned off, so program shouldn't be optimized. ASSERT_FALSE(predictor->status_program_optimized_); LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size(); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); } TEST(AnalysisPredictor, analysis_on) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(true); #ifdef PADDLE_WITH_CUDA config.EnableUseGpu(100, 0); #else config.DisableGpu(); #endif auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // ir is turned on, so program should be optimized. ASSERT_TRUE(predictor->status_program_optimized_); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); for (auto& output : outputs) { LOG(INFO) << inference::DescribeTensor(output); } // compare with NativePredictor auto naive_predictor = CreatePaddlePredictor(config.ToNativeConfig()); std::vector naive_outputs; ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs)); ASSERT_EQ(naive_outputs.size(), 1UL); inference::CompareTensor(outputs.front(), naive_outputs.front()); } TEST(AnalysisPredictor, ZeroCopy) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(false); auto predictor = CreatePaddlePredictor(config); auto w0 = predictor->GetInputTensor("firstw"); auto w1 = predictor->GetInputTensor("secondw"); auto w2 = predictor->GetInputTensor("thirdw"); auto w3 = predictor->GetInputTensor("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PaddlePlace::kCPU); auto* w1_data = w1->mutable_data(PaddlePlace::kCPU); auto* w2_data = w2->mutable_data(PaddlePlace::kCPU); auto* w3_data = w3->mutable_data(PaddlePlace::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->ZeroCopyRun(); auto out = predictor->GetOutputTensor("fc_1.tmp_2"); PaddlePlace place; int size = 0; auto* out_data = out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); LOG(INFO) << "output_data: " << out_data; } TEST(AnalysisPredictor, Clone) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(true); config.SwitchIrOptim(true); std::vector> predictors; predictors.emplace_back(CreatePaddlePredictor(config)); LOG(INFO) << "************** to clone ************************"; const int num_threads = 3; for (int i = 1; i < num_threads; i++) { predictors.emplace_back(predictors.front()->Clone()); } auto* root_scope = static_cast(predictors[0].get())->scope(); ASSERT_FALSE(root_scope->kids().empty()); LOG(INFO) << "***** scope ******\n" << framework::GenScopeTreeDebugInfo(root_scope); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; predictors[0]->Run(inputs, &outputs); LOG(INFO) << "Run with single thread"; for (int i = 0; i < num_threads; i++) { LOG(INFO) << "run predictor " << i; ASSERT_TRUE(predictors[i]->Run(inputs, &outputs)); } LOG(INFO) << "Run with multiple threads"; std::vector threads; for (int i = 0; i < num_threads; i++) { threads.emplace_back([&predictors, &inputs, i] { LOG(INFO) << "thread #" << i << " running"; std::vector outputs; auto predictor = predictors.front()->Clone(); for (int j = 0; j < 10; j++) { ASSERT_TRUE(predictor->Run(inputs, &outputs)); } }); } for (auto& t : threads) { t.join(); } } TEST(AnalysisPredictor, memory_optim) { AnalysisConfig config(FLAGS_dirname); config.DisableGpu(); config.EnableMemoryOptim(true); config.pass_builder()->TurnOnDebug(); auto native_predictor = CreatePaddlePredictor(config.ToNativeConfig()); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector output, output1; { // The first predictor help to cache the memory optimize strategy. auto predictor = CreatePaddlePredictor(config); LOG(INFO) << "serialized program: " << predictor->GetSeriazlizedProgram(); ASSERT_FALSE(predictor->GetSeriazlizedProgram().empty()); // Run several times to check the parameters are not reused by mistake. for (int i = 0; i < 5; i++) { ASSERT_TRUE(predictor->Run(inputs, &output)); } } { output.clear(); // The second predictor to perform memory optimization. config.EnableMemoryOptim(false); auto predictor = CreatePaddlePredictor(config); // Run with memory optimization ASSERT_TRUE(predictor->Run(inputs, &output)); } // Run native ASSERT_TRUE(native_predictor->Run(inputs, &output1)); LOG(INFO) << "the output " << inference::DescribeTensor(output.front()); LOG(INFO) << "the native output " << inference::DescribeTensor(output1.front()); inference::CompareResult(output, output1); } } // namespace paddle