# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from collections import Counter from simple_nets import init_data import paddle import paddle.fluid as fluid def test_trainable(): x = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feature = paddle.static.nn.fc( x, size=10, weight_attr=fluid.ParamAttr(trainable=False) ) loss = paddle.nn.functional.cross_entropy( input=feature, label=label, reduction='none', use_softmax=False ) loss = paddle.mean(loss) return loss class TestTrainable(unittest.TestCase): def check_trainable( self, model, feed_dict, op_count, optimizer=fluid.optimizer.Adam() ): place = fluid.CPUPlace() exe = fluid.Executor(place) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = model() optimizer.minimize(loss) # The number of adam should be one. ops = Counter([op.type for op in main.global_block().ops]) for op in op_count: if op_count[op] == 0: assert op not in ops else: assert ops[op] == op_count[op] exe.run(fluid.default_startup_program()) exe.run(feed=feed_dict) def test_trainable(self): batch_size = 2 img, label = init_data(batch_size, img_shape=[784], label_range=9) feed_dict = {'image': img, 'label': label} # Note that, because the Weight of FC is not trainable and the x is stop_gradient, # so the 'mul_grad' should not be appended. self.check_trainable( test_trainable, feed_dict, op_count={'adam': 1, 'scale': 0, 'mul_grad': 0}, ) self.check_trainable( test_trainable, feed_dict, op_count={'adamax': 1, 'scale': 1, 'mul_grad': 0}, optimizer=fluid.optimizer.Adamax(learning_rate=0.2), ) if __name__ == '__main__': unittest.main()