# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import paddle import paddle.fluid as fluid def train_simulator(test_batch_size=10): if test_batch_size <= 0: raise ValueError( "batch_size should be a positive integeral value, " "but got batch_size={}".format(test_batch_size) ) x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = paddle.static.nn.fc(x, size=1, activation=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y) avg_cost = paddle.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) # Calculate memory usage in current network config lower_usage, upper_usage, unit = fluid.contrib.memory_usage( fluid.default_main_program(), batch_size=test_batch_size ) print( "memory usage is about %.3f - %.3f %s" % (lower_usage, upper_usage, unit) ) class TestMemoryUsage(unittest.TestCase): def test_with_unit_B(self): with self.program_scope_guard(): train_simulator() def test_with_unit_KB(self): with self.program_scope_guard(): train_simulator(test_batch_size=1000) def test_with_unit_MB(self): with self.program_scope_guard(): train_simulator(test_batch_size=100000) @contextlib.contextmanager def program_scope_guard(self): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield if __name__ == '__main__': unittest.main()