# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers class TestConvDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d(x, 2, 1, groups=1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConvDoubleGradCheckTest0(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d(x, 2, 1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConvDoubleGradCheckTest1(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 3, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d(x, 2, 1, padding=1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 3, 4, 2] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d(x, 2, 1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): # places = [fluid.CPUPlace()] places = [] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheckTest1(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 5, 3, 2] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d(x, 2, 1, padding=1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv2DoubleGradCheck_AsyPadding(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d( input=x, num_filters=2, filter_size=1, padding=[1, 0, 0, 1], bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv2DoubleGradCheck_PaddingSAME(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d( input=x, num_filters=2, filter_size=1, padding="SAME", bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv2DoubleGradCheck_PaddingVALID(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d( input=x, num_filters=2, filter_size=1, padding="VALID", bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv2DoubleGradCheck_ChannelLast(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d( input=x, num_filters=2, filter_size=1, padding=[1, 1], bias_attr=False, use_cudnn=True, groups=1, data_format="NHWC", ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv2DoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv2d( input=x, num_filters=2, filter_size=1, padding=[1, 0, 1, 0], bias_attr=False, use_cudnn=True, groups=1, data_format="NHWC", ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheck_AsyPadding(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 2, 2, 2] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d( input=x, num_filters=2, filter_size=1, padding=[1, 0, 0, 1, 1, 2], bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DoubleGradCheck_PaddingSAME(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 2, 2, 2] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d( input=x, num_filters=2, filter_size=1, padding="SAME", groups=1, bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DoubleGradCheck_PaddingVALID(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 3, 3, 2] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d( input=x, num_filters=2, filter_size=1, padding="VALID", bias_attr=False, use_cudnn=True, ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheck_ChannelLast(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 2, 2, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d( input=x, num_filters=2, filter_size=1, padding=[1, 1, 1], bias_attr=False, use_cudnn=True, groups=1, data_format="NDHWC", ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 2, 2, 2, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) y = paddle.static.nn.conv3d( input=x, num_filters=2, filter_size=1, padding=[1, 0, 1, 0, 1, 0], bias_attr=False, use_cudnn=True, groups=1, data_format="NDHWC", ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestDepthWiseConvDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', shape, False, dtype) # condition of depthwise conv: # use_cudnn == False # groups == filters # num_filters % num_channels == 0 y = paddle.static.nn.conv2d( x, shape[1], 1, groups=shape[1], bias_attr=False, use_cudnn=False ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps ) def test_grad(self): places = [] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestDepthWiseConvDoubleGradCheckCase1(unittest.TestCase): def depthwise_conv2d_wrapper(self, x): return paddle.nn.functional.conv2d(x[0], x[1], groups=4) @prog_scope() def func(self, place): x_shape = [2, 4, 3, 3] w_shape = [4, 1, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', x_shape, False, dtype) w = layers.data('w', w_shape, False, dtype) # condition of depthwise conv: # use_cudnn == False # groups == filters # num_filters % num_channels == 0 y = paddle.nn.functional.conv2d(x, w, groups=4) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) w_arr = np.random.uniform(-1, 1, w_shape).astype(dtype) gradient_checker.double_grad_check( [x, w], y, x_init=[x_arr, w_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.depthwise_conv2d_wrapper, [x, w], y, x_init=[x_arr, w_arr], place=place, ) def test_grad(self): places = [] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestConv3DDoubleGradCheck_NN(unittest.TestCase): def conv3d_wrapper(self, x): return paddle.nn.functional.conv3d(x[0], x[1]) @prog_scope() def func(self, place): x_shape = [2, 3, 8, 8, 8] w_shape = [6, 3, 3, 3, 3] eps = 0.005 dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64 x = layers.data('x', x_shape, False, dtype) w = layers.data('w', w_shape, False, dtype) x.persistable = True w.persistable = True y = paddle.nn.functional.conv3d(x, w) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) w_arr = np.random.uniform(-1, 1, w_shape).astype(dtype) gradient_checker.double_grad_check( [x, w], y, x_init=[x_arr, w_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.conv3d_wrapper, [x, w], y, x_init=[x_arr, w_arr], place=place ) def test_grad(self): places = [] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": paddle.enable_static() unittest.main()