# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dist_mnist import cnn_model from test_dist_base import TestDistRunnerBase, runtime_main import paddle import paddle.fluid as fluid DTYPE = "float32" def test_merge_reader(repeat_batch_size=8): orig_reader = paddle.dataset.mnist.test() record_batch = [] b = 0 for d in orig_reader(): if b >= repeat_batch_size: break record_batch.append(d) b += 1 while True: for d in record_batch: yield d class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = paddle.nn.functional.cross_entropy( input=predict, label=label, reduction='none', use_softmax=False ) avg_cost = paddle.mean(x=cost) # Evaluator batch_size_tensor = paddle.tensor.create_tensor(dtype='int64') batch_acc = paddle.static.accuracy( input=predict, label=label, total=batch_size_tensor ) inference_program = fluid.default_main_program().clone() # Optimization opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) # Reader train_reader = paddle.batch(test_merge_reader, batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) opt.minimize(avg_cost) return ( inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, ) if __name__ == "__main__": runtime_main(TestDistMnist2x2)