# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np import paddle from prettytable import PrettyTable from collections import OrderedDict from paddle.static import Program, program_guard, Variable class VarWrapper(object): def __init__(self, var, graph): assert isinstance(var, Variable) assert isinstance(graph, GraphWrapper) self._var = var self._graph = graph def name(self): """ Get the name of the variable. """ return self._var.name def shape(self): """ Get the shape of the varibale. """ return self._var.shape class OpWrapper(object): def __init__(self, op, graph): assert isinstance(graph, GraphWrapper) self._op = op self._graph = graph def type(self): """ Get the type of this operator. """ return self._op.type def inputs(self, name): """ Get all the varibales by the input name. """ if name in self._op.input_names: return [ self._graph.var(var_name) for var_name in self._op.input(name) ] else: return [] def outputs(self, name): """ Get all the varibales by the output name. """ return [self._graph.var(var_name) for var_name in self._op.output(name)] class GraphWrapper(object): """ It is a wrapper of paddle.fluid.framework.IrGraph with some special functions for paddle slim framework. Args: program(framework.Program): A program with in_nodes(dict): A dict to indicate the input nodes of the graph. The key is user-defined and human-readable name. The value is the name of Variable. out_nodes(dict): A dict to indicate the input nodes of the graph. The key is user-defined and human-readable name. The value is the name of Variable. """ def __init__(self, program=None, in_nodes=[], out_nodes=[]): """ """ super(GraphWrapper, self).__init__() self.program = Program() if program is None else program self.persistables = {} self.teacher_persistables = {} for var in self.program.list_vars(): if var.persistable: self.persistables[var.name] = var self.compiled_graph = None in_nodes = [] if in_nodes is None else in_nodes out_nodes = [] if out_nodes is None else out_nodes self.in_nodes = OrderedDict(in_nodes) self.out_nodes = OrderedDict(out_nodes) self._attrs = OrderedDict() def ops(self): """ Return all operator nodes included in the graph as a set. """ ops = [] for block in self.program.blocks: for op in block.ops: ops.append(OpWrapper(op, self)) return ops def var(self, name): """ Get the variable by variable name. """ for block in self.program.blocks: if block.has_var(name): return VarWrapper(block.var(name), self) return None def count_convNd(op): filter_shape = op.inputs("Filter")[0].shape() filter_ops = np.product(filter_shape[1:]) bias_ops = 1 if len(op.inputs("Bias")) > 0 else 0 output_numel = np.product(op.outputs("Output")[0].shape()[1:]) total_ops = output_numel * (filter_ops + bias_ops) return total_ops def count_leaky_relu(op): total_ops = np.product(op.outputs("Output")[0].shape()[1:]) return total_ops def count_bn(op): output_numel = np.product(op.outputs("Y")[0].shape()[1:]) total_ops = 2 * output_numel return total_ops def count_linear(op): total_mul = op.inputs("Y")[0].shape()[0] numel = np.product(op.outputs("Out")[0].shape()[1:]) total_ops = total_mul * numel return total_ops def count_pool2d(op): input_shape = op.inputs("X")[0].shape() output_shape = op.outputs('Out')[0].shape() kernel = np.array(input_shape[2:]) // np.array(output_shape[2:]) total_add = np.product(kernel) total_div = 1 kernel_ops = total_add + total_div num_elements = np.product(output_shape[1:]) total_ops = kernel_ops * num_elements return total_ops def count_element_op(op): input_shape = op.inputs("X")[0].shape() total_ops = np.product(input_shape[1:]) return total_ops def _graph_flops(graph, detail=False): assert isinstance(graph, GraphWrapper) flops = 0 table = PrettyTable(["OP Type", 'Param name', "Flops"]) for op in graph.ops(): param_name = '' if op.type() in ['conv2d', 'depthwise_conv2d']: op_flops = count_convNd(op) flops += op_flops param_name = op.inputs("Filter")[0].name() elif op.type() == 'pool2d': op_flops = count_pool2d(op) flops += op_flops elif op.type() in ['mul', 'matmul']: op_flops = count_linear(op) flops += op_flops param_name = op.inputs("Y")[0].name() elif op.type() == 'batch_norm': op_flops = count_bn(op) flops += op_flops elif op.type().startswith('element'): op_flops = count_element_op(op) flops += op_flops if op_flops != 0: table.add_row([op.type(), param_name, op_flops]) op_flops = 0 if detail: print(table) return flops def static_flops(program, print_detail=False): graph = GraphWrapper(program) return _graph_flops(graph, detail=print_detail)