# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import numpy as np import unittest from test_softmax_op import stable_softmax from test_softmax_with_cross_entropy_op import cross_entropy from paddle.fluid import Program, program_guard from paddle.fluid.framework import _test_eager_guard def log_softmax(x, axis=-1): softmax_out = np.apply_along_axis(stable_softmax, axis, x) return np.log(softmax_out) def cross_entropy_loss_1d(input, label, weight=None, reduction='mean', ignore_index=-100): log_softmax_out = log_softmax(input) input_shape = log_softmax_out.shape N = input_shape[0] C = input_shape[1] out = np.zeros_like(label).astype(np.float64) total_weight = 0 ###1. compute softmax cross_entropy (with weight) ### Note: only support hard labels. for i in range(N): cur_target = label[i] if cur_target == ignore_index: out[i] = 0 continue cur_weight = weight[cur_target] if weight is not None else 1 total_weight += cur_weight out[i] = -log_softmax_out[i][cur_target] * cur_weight ###2. deal with reduction if reduction == 'sum': return np.sum(out), np.array([total_weight]).astype('float64') elif reduction == 'mean': out = out.sum() / total_weight if total_weight != 0 else out.sum() return out, np.array([total_weight]).astype('float64') elif reduction == 'none': return out def cross_entropy_loss_2d(input, label, weight=None, reduction='mean', ignore_index=-100): log_softmax_out = log_softmax(input) input_shape = log_softmax_out.shape N = input_shape[0] H = input_shape[1] W = input_shape[2] out = np.zeros_like(label).astype(np.float64) total_weight = 0 for i in range(N): for h in range(H): for w in range(W): cur_target = label[i][h][w] if cur_target == ignore_index: out[i][h][w] = 0 continue cur_weight = weight[cur_target] if weight is not None else 1 total_weight += cur_weight out[i][h][ w] = -log_softmax_out[i][h][w][cur_target] * cur_weight if reduction == 'sum': return np.sum(out), np.array([total_weight]).astype('float64') elif reduction == 'mean': out = out.sum() / total_weight if total_weight != 0 else out.sum() return out, np.array([total_weight]).astype('float64') elif reduction == 'none': return out def cross_entropy_soft(softmax, label, axis, N, weight=None, reduction='mean', ignore_index=-100): #1.loss loss = cross_entropy( softmax, label, True, #soft_label, axis, ignore_index) if weight is None and reduction == 'none': return loss #2.weight weighted_loss = loss total_weight = N #for weight is None if weight is not None: weighted_loss = np.zeros_like(loss).astype(np.float64) total_weight = 0 for i in range(N): cur_soft_label = label[i] cur_weight = np.dot(weight, cur_soft_label) total_weight += cur_weight weighted_loss[i] = loss[i] * cur_weight #3.reduce if reduction == 'none': return weighted_loss elif reduction == 'mean': weighted_loss_sum = np.sum(weighted_loss) weighted_loss_mean = weighted_loss_sum / total_weight return weighted_loss_mean else: weighted_loss_sum = np.sum(weighted_loss) return weighted_loss_sum def cross_entropy_soft_2d(softmax, label, axis, N, H, W, weight=None, reduction='mean', ignore_index=-100): #1.loss loss = cross_entropy( softmax, label, True, #soft_label, axis, ignore_index) if weight is None and reduction == 'none': return loss #2.weight weighted_loss = loss total_weight = N #for weight is None if weight is not None: weighted_loss = np.zeros_like(loss).astype(np.float64) total_weight = 0 for i in range(N): for h in range(H): for w in range(W): cur_soft_label = label[i][h][w] cur_weight = np.dot(weight, cur_soft_label) total_weight += cur_weight weighted_loss[i][h][w] = loss[i][h][w] * cur_weight #3.reduce if reduction == 'none': return weighted_loss elif reduction == 'mean': weighted_loss_sum = np.sum(weighted_loss) weighted_loss_mean = weighted_loss_sum / total_weight return weighted_loss_mean else: weighted_loss_sum = np.sum(weighted_loss) return weighted_loss_sum class CrossEntropyLoss(unittest.TestCase): def setUp(self): self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' ###test for deprecated softmax_with_cross_entropy def test_softmax_with_cross_entropy(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 4 self.C = 3 self.shape = [self.N, self.C] self.use_softmax = True self.reduction = 'none' self.weight = None self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) expected = cross_entropy_soft(softmax, self.labels, self.axis, self.N, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") paddle.disable_static() paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis) paddle_loss_ce = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight) if self.weight is not None else None, reduction=self.reduction) np.testing.assert_allclose(paddle_loss_swce.numpy(), expected, rtol=1e-05) np.testing.assert_allclose(paddle_loss_ce.numpy(), expected, rtol=1e-05) ###soft_label test start ###soft_label test 1 def test_cross_entropy_loss_soft_1d(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 4 self.C = 3 self.shape = [self.N, self.C] self.use_softmax = True self.reduction = 'none' self.weight = None self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) expected = cross_entropy_soft(softmax, self.labels, self.axis, self.N, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") #2. dygraph paddle.disable_static() paddle_loss_none_weight = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight) if self.weight is not None else None, reduction=self.reduction) dy_ret_value = paddle_loss_none_weight.numpy() #3. static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test 2 def test_cross_entropy_loss_soft_1d_weight(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 4 self.C = 3 self.shape = [self.N, self.C] self.use_softmax = True self.reduction = 'none' self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype) self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) if self.soft_label: self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) else: axis_dim = self.shape[self.axis] self.shape[self.axis] = 1 self.labels = np.random.randint(0, axis_dim, self.shape, dtype="int64") #1. numpy expected = cross_entropy_soft(softmax, self.labels, self.axis, self.N, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") #2. dygraph paddle.disable_static() paddle_loss_none_weight = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight), reduction=self.reduction) dy_ret_value = paddle_loss_none_weight.numpy() # 3.static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.C], dtype=self.dtype) weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels, "weight": self.weight }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test 3 def test_cross_entropy_loss_soft_1d_mean(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 4 self.C = 3 self.shape = [self.N, self.C] self.use_softmax = True self.reduction = 'mean' self.weight = None self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) #1. numpy expected = cross_entropy_soft(softmax, self.labels, self.axis, self.N, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") #2 dygraph paddle.disable_static() paddle_loss_mean = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=self.weight, reduction=self.reduction) dy_ret_value = paddle_loss_mean.numpy() #3. static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test 4 def test_cross_entropy_loss_soft_1d_weight_mean(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 4 self.C = 3 self.shape = [self.N, self.C] self.use_softmax = True self.reduction = 'mean' self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype) self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) #1. numpy expected = cross_entropy_soft(softmax, self.labels, self.axis, self.N, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") paddle.disable_static() #2. dygraph paddle_loss_none_weight = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight), reduction=self.reduction) dy_ret_value = paddle_loss_none_weight.numpy() #3. static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.C], dtype=self.dtype) weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels, "weight": self.weight }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test 5 def test_cross_entropy_loss_soft_2d(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 3 self.H = 2 self.W = 2 self.C = 5 self.shape = [self.N, self.H, self.W, self.C] self.use_softmax = True self.reduction = 'none' self.weight = None self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) #1. numpy expected = cross_entropy_soft_2d(softmax, self.labels, self.axis, self.N, self.H, self.W, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") paddle.disable_static() #2. dygraph paddle_loss_none_weight = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight) if self.weight is not None else None, reduction=self.reduction) dy_ret_value = paddle_loss_none_weight.numpy() #3. static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.H, self.W, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.H, self.W, self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test 6 def test_cross_entropy_loss_soft_2d_weight_mean(self): self.numeric_stable_mode = False self.soft_label = True self.dtype = 'float32' if fluid.core.is_compiled_with_rocm( ) else 'float64' self.axis = -1 self.ignore_index = -100 #should not be changed self.N = 3 self.H = 2 self.W = 2 self.C = 5 self.shape = [self.N, self.H, self.W, self.C] self.use_softmax = True self.reduction = 'mean' self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype) self.logits = getattr( self, "logits", np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits) self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True) #1. numpy expected = cross_entropy_soft_2d(softmax, self.labels, self.axis, self.N, self.H, self.W, weight=self.weight, reduction=self.reduction, ignore_index=self.ignore_index) paddle.set_device("cpu") paddle.disable_static() #2. dygraph paddle_loss_none_weight = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(self.logits), fluid.dygraph.to_variable(self.labels), soft_label=True, axis=self.axis, weight=fluid.dygraph.to_variable(self.weight), reduction=self.reduction) dy_ret_value = paddle_loss_none_weight.numpy() #3. static paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[self.N, self.H, self.W, self.C], dtype=self.dtype) label = fluid.data(name='label', shape=[self.N, self.H, self.W, self.C], dtype=self.dtype) weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction=self.reduction, soft_label=True) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': self.logits, 'label': self.labels, "weight": self.weight }, fetch_list=[ret]) self.assertIsNotNone(static_ret) paddle.disable_static() np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) ###soft_label test end def test_cross_entropy_loss_1d_with_mean_ignore(self): input_np = np.random.random([2, 4]).astype(self.dtype) label_np = np.random.randint(0, 4, size=(2)).astype(np.int64) paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype) label = fluid.data(name='label', shape=[2], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) expected = cross_entropy_loss_1d(input_np, label_np)[0] with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(axis=1, ignore_index=0) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_mean_ignore_negative(self): N = 100 C = 200 input_np = np.random.random([N, C]).astype(self.dtype) label_np = -np.ones((N)).astype(np.int64) paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[N, C], dtype=self.dtype) label = fluid.data(name='label', shape=[N], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( ignore_index=-1) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( axis=1, ignore_index=-1) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_mean_ignore(self): N = 100 C = 200 input_np = np.random.random([N, C]).astype(self.dtype) label_np = np.random.randint(0, C, size=(N)).astype(np.int64) weight_np = np.random.random([C]).astype(self.dtype) paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[N, C], dtype=self.dtype) label = fluid.data(name='label', shape=[N], dtype='int64') weight = fluid.data(name='weight', shape=[C], dtype=self.dtype) #weight for each class cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, ignore_index=0) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), axis=1, ignore_index=0) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np, ignore_index=0)[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self): N = 100 C = 200 input_np = np.random.random([N, C]).astype(self.dtype) label_np = np.random.randint(0, C, size=(N)).astype(np.int64) label_np[0] = 255 weight_np = np.random.random([C]).astype(self.dtype) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), ignore_index=255) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np, ignore_index=255)[0] np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_mean(self): input_np = np.random.random([2, 4]).astype(self.dtype) label_np = np.random.randint(0, 4, size=(2)).astype(np.int64) weight_np = np.random.random([4]).astype(self.dtype) #shape:C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype) label = fluid.data(name='label', shape=[2], dtype='int64') weight = fluid.data(name='weight', shape=[4], dtype=self.dtype) #weight for each class cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np)[0] with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), axis=1) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np)[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_sum(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N,1 weight_np = np.random.random([200]).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') weight = fluid.data(name='weight', shape=[200], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='sum') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='sum') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np, reduction='sum')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_none(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N,1 weight_np = np.random.random([200]).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') weight = fluid.data(name='weight', shape=[200], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='none') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) static_ret = np.squeeze(static_ret) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='none') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() dy_ret_value = np.squeeze(dy_ret_value) self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np, reduction='none') np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_with_weight_none_func(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N weight_np = np.random.random([200]).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') weight = fluid.data(name='weight', shape=[200], dtype=self.dtype) ret = paddle.nn.functional.cross_entropy(input, label, weight=weight, reduction='none') exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) static_ret = np.squeeze(static_ret) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): dy_ret = paddle.nn.functional.cross_entropy( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np), weight=fluid.dygraph.to_variable(weight_np), reduction='none') dy_ret_value = dy_ret.numpy() dy_ret_value = np.squeeze(dy_ret_value) self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, weight=weight_np, reduction='none') np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_mean(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N,1 paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss() ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss() dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np)[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_sum(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N,1 paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='sum') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='sum') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_1d_none(self): input_np = np.random.random([100, 200]).astype(self.dtype) #N,C label_np = np.random.randint(0, 100, size=(100)).astype(np.int64) #N,1 paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype) label = fluid.data(name='label', shape=[100], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='none') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np }, fetch_list=[ret]) static_ret = np.squeeze(static_ret) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='none') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() dy_ret_value = np.squeeze(dy_ret_value) self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_1d(input_np, label_np, reduction='none') np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_with_weight_none(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW1 weight_np = np.random.random(size=(3, )).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') weight = fluid.data(name='weight', shape=[3], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='none') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) static_ret = np.squeeze(static_ret) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='none') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() dy_ret_value = np.squeeze(dy_ret_value) self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, weight=weight_np, reduction='none') np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_with_weight_axis_change_mean(self): input_np = np.random.random(size=(2, 3, 2, 2)).astype(self.dtype) #NCHW label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW weight_np = np.random.random(size=(3, )).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 3, 2, 2], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') weight = fluid.data(name='weight', shape=[3], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='mean', axis=1) # specify the class channels to axis 1 ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='mean', axis=1) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(np.transpose(input_np, [0, 2, 3, 1]), label_np, weight=weight_np, reduction='mean')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self): N = 4 C = 3 H = 512 W = 512 input_np = np.random.random([N, H, W, C]).astype(self.dtype) label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64) label_np[0, 0, 0] = 255 weight_np = np.random.random([C]).astype(self.dtype) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), ignore_index=255) dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, weight=weight_np, ignore_index=255)[0] np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_with_weight_mean(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW weight_np = np.random.random(size=(3, )).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') weight = fluid.data(name='weight', shape=[3], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='mean') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='mean') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, weight=weight_np, reduction='mean')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_with_weight_sum(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW weight_np = np.random.random(size=(3, )).astype(self.dtype) #C paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') weight = fluid.data(name='weight', shape=[3], dtype=self.dtype) cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='sum') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='sum') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, weight=weight_np, reduction='sum')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_none(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='none') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, }, fetch_list=[ret]) static_ret = np.squeeze(static_ret) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='none') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() dy_ret_value = np.squeeze(dy_ret_value) self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, reduction='none') np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_mean(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='mean') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='mean') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, reduction='mean')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_cross_entropy_loss_2d_sum(self): input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype) #NHWC label_np = np.random.randint(0, 3, size=(2, 2, 2)).astype(np.int64) #NHW paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 2, 2, 3], dtype=self.dtype) label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='sum') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( reduction='sum') dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0] np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05) np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05) def test_soft_1d_dygraph_final_state_api(self): with _test_eager_guard(): self.test_cross_entropy_loss_soft_1d() self.test_cross_entropy_loss_soft_1d_weight() self.test_cross_entropy_loss_soft_1d_mean() self.test_cross_entropy_loss_soft_1d_weight_mean() # put all testcases in one test will be failed def test_soft_2d_dygraph_final_state_api(self): with _test_eager_guard(): self.test_cross_entropy_loss_soft_2d() self.test_cross_entropy_loss_soft_2d_weight_mean() def test_other_dygraph_final_state_api(self): with _test_eager_guard(): self.test_cross_entropy_loss_1d_with_mean_ignore() self.test_cross_entropy_loss_1d_with_mean_ignore_negative() self.test_cross_entropy_loss_1d_with_weight_mean_ignore() self.test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel( ) self.test_cross_entropy_loss_1d_with_weight_mean() self.test_cross_entropy_loss_1d_with_weight_sum() self.test_cross_entropy_loss_1d_with_weight_none() self.test_cross_entropy_loss_1d_with_weight_none_func() self.test_cross_entropy_loss_1d_mean() self.test_cross_entropy_loss_1d_sum() self.test_cross_entropy_loss_1d_none() self.test_cross_entropy_loss_2d_with_weight_none() self.test_cross_entropy_loss_2d_with_weight_axis_change_mean() self.test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel( ) self.test_cross_entropy_loss_2d_with_weight_mean() self.test_cross_entropy_loss_2d_with_weight_sum() self.test_cross_entropy_loss_2d_none() self.test_cross_entropy_loss_2d_mean() self.test_cross_entropy_loss_2d_sum() class TestCrossEntropyFAPIError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): def test_WeightLength_NotEqual(): input_data = paddle.rand(shape=[20, 100]) label_data = paddle.randint(0, 100, shape=[20, 1], dtype="int64") weight_data = paddle.rand([100 + 1]) paddle.nn.functional.cross_entropy(input=input_data, label=label_data, weight=weight_data, ignore_index=-100) self.assertRaises(ValueError, test_WeightLength_NotEqual) def test_LabelValue_ExceedMax(): input_data = paddle.rand(shape=[20, 100]) label_data = paddle.randint(0, 100, shape=[20, 1], dtype="int64") label_data[0] = 100 weight_data = paddle.rand([100]) paddle.nn.functional.cross_entropy(input=input_data, label=label_data, weight=weight_data, ignore_index=-100) self.assertRaises(ValueError, test_LabelValue_ExceedMax) def test_LabelValue_ExceedMin(): input_data = paddle.rand(shape=[20, 100]) label_data = paddle.randint(0, 100, shape=[20, 1], dtype="int64") label_data[0] = -1 weight_data = paddle.rand([100]) paddle.nn.functional.cross_entropy(input=input_data, label=label_data, weight=weight_data, ignore_index=-100) self.assertRaises(ValueError, test_LabelValue_ExceedMin) def static_test_WeightLength_NotEqual(): input_np = np.random.random([2, 4]).astype('float32') label_np = np.random.randint(0, 4, size=(2)).astype(np.int64) weight_np = np.random.random([3]).astype('float32') paddle.enable_static() prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[2, 4], dtype='float32') label = fluid.data(name='label', shape=[2], dtype='int64') weight = fluid.data(name='weight', shape=[3], dtype='float32') #weight for each class cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) self.assertRaises(ValueError, static_test_WeightLength_NotEqual) if __name__ == "__main__": unittest.main()