// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/extension.h" namespace paddle { namespace custom_kernel { // Here we use dot for test // This test will fail when this kernel is supported in framework template void Dot(const Context& dev_ctx, const paddle::Tensor& x, const paddle::Tensor& y, paddle::Tensor* out) { auto const *x_ptr = x.data(), *x_ptr_ = &x_ptr[0]; auto const *y_ptr = y.data(), *y_ptr_ = &y_ptr[0]; auto* z = out->mutable_data(paddle::PlaceType::kCPU); // Loop over the total N elements of both operands while sum-reducing every // B pairs along the way where B is the dimension of the least ordered axis auto shape = x.shape(); auto const N = x.numel(); auto const B = shape[shape.size() - 1]; for (int j = 0; j < N / B; j++) { T ss = 0; for (int i = 0; i < B; i++) ss += (*x_ptr_++) * (*y_ptr_++); z[j] = ss; } } } // namespace custom_kernel } // namespace paddle PD_REGISTER_KERNEL(dot, CPU, ALL_LAYOUT, paddle::custom_kernel::Dot, int8_t) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::INT8); }