# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import scipy.special import scipy.stats from paddle.distribution import kl import config import mock_data as mock import parameterize as param np.random.seed(2022) paddle.seed(2022) paddle.set_default_dtype('float64') @param.place(config.DEVICES) @param.parameterize_cls((param.TEST_CASE_NAME, 'a1', 'b1', 'a2', 'b2'), [ ('test_regular_input', 6.0 * np.random.random( (4, 5)) + 1e-4, 6.0 * np.random.random( (4, 5)) + 1e-4, 6.0 * np.random.random( (4, 5)) + 1e-4, 6.0 * np.random.random((4, 5)) + 1e-4), ]) class TestKLBetaBeta(unittest.TestCase): def setUp(self): self.p = paddle.distribution.Beta(paddle.to_tensor(self.a1), paddle.to_tensor(self.b1)) self.q = paddle.distribution.Beta(paddle.to_tensor(self.a2), paddle.to_tensor(self.b2)) def test_kl_divergence(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( paddle.distribution.kl_divergence(self.p, self.q), self.scipy_kl_beta_beta(self.a1, self.b1, self.a2, self.b2), rtol=config.RTOL.get(str(self.a1.dtype)), atol=config.ATOL.get(str(self.a1.dtype))) def scipy_kl_beta_beta(self, a1, b1, a2, b2): return (scipy.special.betaln(a2, b2) - scipy.special.betaln(a1, b1) + (a1 - a2) * scipy.special.digamma(a1) + (b1 - b2) * scipy.special.digamma(b1) + (a2 - a1 + b2 - b1) * scipy.special.digamma(a1 + b1)) @param.place(config.DEVICES) @param.param_cls((param.TEST_CASE_NAME, 'conc1', 'conc2'), [ ('test-regular-input', np.random.random( (5, 7, 8, 10)), np.random.random((5, 7, 8, 10))), ]) class TestKLDirichletDirichlet(unittest.TestCase): def setUp(self): self.p = paddle.distribution.Dirichlet(paddle.to_tensor(self.conc1)) self.q = paddle.distribution.Dirichlet(paddle.to_tensor(self.conc2)) def test_kl_divergence(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( paddle.distribution.kl_divergence(self.p, self.q), self.scipy_kl_diric_diric(self.conc1, self.conc2), rtol=config.RTOL.get(str(self.conc1.dtype)), atol=config.ATOL.get(str(self.conc1.dtype))) def scipy_kl_diric_diric(self, conc1, conc2): return ( scipy.special.gammaln(np.sum(conc1, -1)) - scipy.special.gammaln(np.sum(conc2, -1)) - np.sum( scipy.special.gammaln(conc1) - scipy.special.gammaln(conc2), -1) + np.sum( (conc1 - conc2) * (scipy.special.digamma(conc1) - scipy.special.digamma(np.sum(conc1, -1, keepdims=True))), -1)) class DummyDistribution(paddle.distribution.Distribution): pass @param.place(config.DEVICES) @param.param_cls((param.TEST_CASE_NAME, 'p', 'q'), [('test-unregister', DummyDistribution(), DummyDistribution)]) class TestDispatch(unittest.TestCase): def test_dispatch_with_unregister(self): with self.assertRaises(NotImplementedError): paddle.distribution.kl_divergence(self.p, self.q) @param.place(config.DEVICES) @param.param_cls( (param.TEST_CASE_NAME, 'p', 'q'), [('test-diff-dist', mock.Exponential(paddle.rand((100, 200, 100)) + 1.0), mock.Exponential(paddle.rand((100, 200, 100)) + 2.0)), ('test-same-dist', mock.Exponential( paddle.to_tensor(1.0)), mock.Exponential(paddle.to_tensor(1.0)))]) class TestKLExpfamilyExpFamily(unittest.TestCase): def test_kl_expfamily_expfamily(self): np.testing.assert_allclose(paddle.distribution.kl_divergence( self.p, self.q), kl._kl_expfamily_expfamily(self.p, self.q), rtol=config.RTOL.get(config.DEFAULT_DTYPE), atol=config.ATOL.get(config.DEFAULT_DTYPE)) if __name__ == '__main__': unittest.main()