/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/tensor_array.h" #include #include #include namespace paddle { namespace framework { namespace detail { /* * Offer an iterator over the length-sorted lod-tensor's top level. The top * level of a lod-tensor stores batch-size of sequences, each top-level sequence * may contains several lower-level sequences, sort top-level lod by the numbers * of lower-level sequences in descending order, so that during RNN's running, * the batch-size will keep decreasing, the short sentences will end at the tail * of each batch. * * Let's take a simple lod-tensor for example * * |(0) |(1) top-level has two instances * ||| ||||| lower-level * * sort by lower-level's length * * |(1) |(0) * ||||| ||| * * when RNN runs, it get 5 batches (equals the number of elements the longest * sequence has) * * ||||| * ||| * * the first three batches has two elements, the last two elements just has 1 * element each. */ struct DynamicBatchUnpacker { using value_type = float; DynamicBatchUnpacker(const LoDTensor& source, size_t level, bool descend = true) : source(&source), level(level) { BuildLengthSortedMeta(descend); } LoDTensor GetBatch(size_t index); std::vector meta; LoDTensor const* source; size_t level; protected: void BuildLengthSortedMeta(bool descend); }; LoDTensor PackDynamicBatch(const std::vector& source, const std::vector& meta, const LoD& lod, size_t level); } // namespace detail const LoDTensor& TensorArray::Read(size_t index) const { PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); if (index >= size()) { values_.resize(index + 1); } return values_[index]; } void TensorArray::Write(size_t index, const LoDTensor& value) { PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); if (index >= size()) { values_.resize(index + 1); } values_[index].Resize(value.dims()); values_[index].mutable_data(platform::CPUPlace()); values_[index].CopyFrom(value, platform::CPUPlace(), platform::CPUDeviceContext()); } void TensorArray::WriteShared(size_t index, const LoDTensor& value) { PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); if (index >= size()) { values_.resize(index + 1); } values_[index].ShareDataWith(value); } LoDTensor TensorArray::Pack(size_t level, const std::vector& meta, const LoD& lod) const { return detail::PackDynamicBatch(values_, meta, lod, level); } std::vector TensorArray::Unpack(const LoDTensor& source, int level, bool length_desend) { detail::DynamicBatchUnpacker unpacker(source, level, length_desend /*descend*/); // find max length of all the sequences size_t max_length = 0; for (const auto& seq : unpacker.meta) { max_length = std::max(max_length, seq.end - seq.begin); } // write batches to values for (size_t batch_id = 0; batch_id < max_length; batch_id++) { Write(batch_id, unpacker.GetBatch(batch_id)); } return unpacker.meta; } LoDTensor TensorArray::Stack() const { LoDTensor result; if (size() == 0) return result; const auto& first_dims = values_.front().dims(); // check all the values have the same shape // TODO(superjom) check the same dtypes for (size_t idx = 1; idx < size(); idx++) { const auto& value_dims = values_[idx].dims(); PADDLE_ENFORCE_EQ(first_dims, value_dims); } // copy auto result_dims = vectorize(first_dims); result_dims.insert(result_dims.begin(), size()); result.Resize(make_ddim(result_dims)); result.mutable_data(platform::CPUPlace()); for (size_t idx = 0; idx < size(); idx++) { result.Slice(idx, idx + 1) .CopyFrom(Read(idx), platform::CPUPlace(), platform::CPUDeviceContext()); } return result; } void TensorArray::Unstack(const LoDTensor& source) const { Unstack(source, false /*data_shared*/); } void TensorArray::UnstackShared(const LoDTensor& source) const { Unstack(source, true /*data_shared*/); } void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const { size_t first_dim = source.dims()[0]; DDim value_dims = slice_ddim(source.dims(), 1, source.dims().size()); PADDLE_ENFORCE_GT(first_dim, 0, "source should have some data to be unstacked"); values_.resize(first_dim); for (size_t elem = 0; elem < first_dim; elem++) { // create a new value auto& value = values_[elem]; if (data_shared) { // share memory value.ShareDataWith(source.Slice(elem, elem + 1)); } else { // copy value.Resize(value_dims); value.CopyFrom(source.Slice(elem, elem + 1), platform::CPUPlace(), platform::CPUDeviceContext()); } } } size_t TensorArray::size() const { return values_.size(); } namespace detail { void DynamicBatchUnpacker::BuildLengthSortedMeta(bool descend) { PADDLE_ENFORCE(meta.empty(), "duplicate build meta"); // collect meta for each sequence in some level auto lod = SliceLevels(source->lod(), level, level + 1)[0]; for (size_t seq_id = 0; seq_id < lod.size() - 1; seq_id++) { DySeqMeta seq_meta({lod[seq_id], lod[seq_id + 1], seq_id}); meta.push_back(seq_meta); } PADDLE_ENFORCE_GT(meta.size(), 0, "meta is empty"); // sort by length sort(meta.begin(), meta.end(), [descend](const DySeqMeta& a, const DySeqMeta& b) { bool a_ge_b = (a.end - a.begin) > (b.end - b.begin); return descend ? a_ge_b : !a_ge_b; }); } LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { PADDLE_ENFORCE(!meta.empty(), "should build meta first"); LoDTensor result; // collect indice need to copy to the batch std::vector indice; for (const auto& seq : meta) { size_t id = seq.begin + index; if (id >= seq.end) break; indice.push_back(id); } PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index); // copy the indice of records in LoDTensor auto record_dims = slice_ddim(source->dims(), 1, source->dims().size()); auto record_dims_vec = vectorize(record_dims); record_dims_vec.insert(record_dims_vec.begin(), indice.size()); result.Resize(make_ddim(record_dims_vec)); result.mutable_data(platform::CPUPlace()); for (size_t i = 0; i < indice.size(); i++) { auto index = indice[i]; auto target = result.Slice(i, i + 1); auto source_ = source->Slice(index, index + 1); target.CopyFrom(source_, platform::CPUPlace(), platform::CPUDeviceContext()); } return result; } // TODO(supejom) to cache lod if reasonable LoDTensor PackDynamicBatch(const std::vector& source, const std::vector& meta, const LoD& lod, size_t level) { PADDLE_ENFORCE(!source.empty()); PADDLE_ENFORCE(!meta.empty()); PADDLE_ENFORCE(!lod.empty()); LoDTensor result; // init result space auto record_dims = slice_ddim(source[0].dims(), 1, source[0].dims().size()); auto record_dims_vec = vectorize(record_dims); auto height = lod[level].back(); record_dims_vec.insert(record_dims_vec.begin(), height); result.Resize(make_ddim(record_dims_vec)); result.mutable_data(platform::CPUPlace()); for (size_t batch_id = 0; batch_id < source.size(); batch_id++) { for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) { const auto& seq_meta = meta[seq_id]; // source is source[batch_id][seq_id] // target is result[index] auto index = seq_meta.begin + batch_id; if (index >= seq_meta.end) break; auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); auto target = result.Slice(index, index + 1); target.CopyFrom(source_, platform::CPUPlace(), platform::CPUDeviceContext()); } } result.set_lod(lod); return result; } } // namespace detail } // namespace framework } // namespace paddle