# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from functools import partial import contextlib import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid as fluid import paddle.fluid.framework as framework import paddle.fluid.optimizer as optimizer import paddle.fluid.regularizer as regularizer from paddle.fluid.backward import append_backward class TestL2DecayRegularizer(unittest.TestCase): def test_l2decay_regularizer(self): program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", regularizer=regularizer.L2DecayRegularizer(0.5)) self.assertTrue(mul_x.regularizer is not None) self.assertTrue( isinstance(mul_x.regularizer, regularizer.L2DecayRegularizer)) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) self.assertEqual(len(params_grads), 1) self.assertEqual(len(block.ops), count_ops + 2) self.assertEqual(block.ops[-1].type, 'sum') self.assertEqual(block.ops[-2].type, 'scale') class TestL1DecayRegularizer(unittest.TestCase): def test_l2decay_regularizer(self): program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", regularizer=regularizer.L1DecayRegularizer(0.5)) self.assertTrue(mul_x.regularizer is not None) self.assertTrue( isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer)) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) self.assertEqual(len(params_grads), 1) self.assertEqual(len(block.ops), count_ops + 3) self.assertEqual(block.ops[-1].type, 'sum') self.assertEqual(block.ops[-2].type, 'scale') self.assertEqual(block.ops[-3].type, 'sign') def bow_net(data, label, dict_dim, is_sparse=False, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding( input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) return avg_cost class TestRegularizer(unittest.TestCase): def setUp(self): self.word_dict = paddle.dataset.imdb.word_dict() reader = paddle.batch( paddle.dataset.imdb.train(self.word_dict), batch_size=8)() self.train_data = [next(reader) for _ in range(5)] def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places @contextlib.contextmanager def scope_prog_guard(self, main_prog, startup_prog): scope = fluid.core.Scope() with fluid.unique_name.guard(): with fluid.scope_guard(scope): with fluid.program_guard(main_prog, startup_prog): yield def run_program(self, place, feed_list): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) main_prog = fluid.default_main_program() param_list = [var.name for var in main_prog.block(0).all_parameters()] param_sum = [] for data in self.train_data: out = exe.run(main_prog, feed=feeder.feed(data), fetch_list=param_list) p_sum = 0 for v in out: p_sum += np.sum(np.abs(v)) param_sum.append(p_sum) return param_sum def check_l2decay_regularizer(self, place, model): main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() startup_prog.random_seed = 1 with self.scope_prog_guard( main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost = model(data, label, len(self.word_dict)) optimizer = fluid.optimizer.Adagrad( learning_rate=0.1, regularization=fluid.regularizer.L2Decay(1.0)) optimizer.minimize(avg_cost) param_sum = self.run_program(place, [data, label]) return param_sum def check_l2decay(self, place, model): main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() startup_prog.random_seed = 1 with self.scope_prog_guard( main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost_l2 = model(data, label, len(self.word_dict)) param_list = fluid.default_main_program().block(0).all_parameters() para_sum = [] for para in param_list: para_mul = fluid.layers.square(x=para) para_sum.append(fluid.layers.reduce_sum(input=para_mul)) avg_cost_l2 += fluid.layers.sums(para_sum) * .5 optimizer = fluid.optimizer.Adagrad(learning_rate=0.1) optimizer.minimize(avg_cost_l2) param_sum = self.run_program(place, [data, label]) return param_sum def test_l2(self): for place in self.get_places(): dense_sparse_p_sum = [] for sparse in [True, False]: model = partial(bow_net, is_sparse=sparse) framework_l2 = self.check_l2decay_regularizer(place, model) l2 = self.check_l2decay(place, model) assert len(l2) == len(framework_l2) for i in range(len(l2)): assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5) dense_sparse_p_sum.append(framework_l2) assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1]) for i in range(len(dense_sparse_p_sum[0])): assert np.isclose( a=dense_sparse_p_sum[0][i], b=dense_sparse_p_sum[1][i], rtol=5e-5) def test_repeated_regularization(self): with fluid.dygraph.guard(): input = fluid.dygraph.to_variable( np.random.randn(3, 5).astype('float32')) fluid.default_main_program().random_seed = 1 l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1) fc_param_attr = fluid.ParamAttr(regularizer=l1) linear1 = fluid.dygraph.Linear( 5, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr) linear2 = fluid.dygraph.Linear( 5, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr) loss1 = linear1(input) loss1.backward() # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr l2 = fluid.regularizer.L2Decay(regularization_coeff=0.01) fluid.optimizer.SGD(parameter_list=linear1.parameters(), learning_rate=1e-2, regularization=l2).minimize(loss1) # only set l1 in fluid.ParamAttr loss2 = linear2(input) loss2.backward() fluid.optimizer.SGD(parameter_list=linear2.parameters(), learning_rate=1e-2).minimize(loss2) # they should both be applied by l1, and keep the same self.assertTrue( np.allclose(linear1.weight.numpy(), linear2.weight.numpy()), "weight should use the regularization in fluid.ParamAttr!") self.assertTrue( np.allclose(linear1.bias.numpy(), linear1.bias.numpy()), "bias should use the regularization in fluid.ParamAttr!") if __name__ == '__main__': unittest.main()