// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #define GLOG_NO_ABBREVIATED_SEVERITIES #define GOOGLE_GLOG_DLL_DECL #include #include #include // NOLINT #include #include #include #include #include #include "paddle/fluid/inference/api/timer.h" #include "paddle_inference_api.h" //NOLINT namespace paddle { namespace inference { static void split(const std::string &str, char sep, std::vector *pieces) { pieces->clear(); if (str.empty()) { return; } size_t pos = 0; size_t next = str.find(sep, pos); while (next != std::string::npos) { pieces->push_back(str.substr(pos, next - pos)); pos = next + 1; next = str.find(sep, pos); } if (!str.substr(pos).empty()) { pieces->push_back(str.substr(pos)); } } static void split_to_float(const std::string &str, char sep, std::vector *fs) { std::vector pieces; split(str, sep, &pieces); std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs), [](const std::string &v) { return std::stof(v); }); } static void split_to_int64(const std::string &str, char sep, std::vector *is) { std::vector pieces; split(str, sep, &pieces); std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is), [](const std::string &v) { return std::stoi(v); }); } template std::string to_string(const std::vector &vec) { std::stringstream ss; for (const auto &c : vec) { ss << c << " "; } return ss.str(); } template <> std::string to_string>( const std::vector> &vec); template <> std::string to_string>>( const std::vector>> &vec); template int VecReduceToInt(const std::vector &v) { return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; }); } template static void TensorAssignData(PaddleTensor *tensor, const std::vector> &data) { // Assign buffer int num_elems = VecReduceToInt(tensor->shape); tensor->data.Resize(sizeof(T) * num_elems); int c = 0; for (const auto &f : data) { for (T v : f) { static_cast(tensor->data.data())[c++] = v; } } } template static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor, const std::vector> &data) { int size{0}; auto *ptr = tensor->mutable_data(PaddlePlace::kCPU); int c = 0; for (const auto &f : data) { for (T v : f) { ptr[c++] = v; } } return size; } static std::string DescribeTensor(const PaddleTensor &tensor) { std::stringstream os; os << "Tensor [" << tensor.name << "]\n"; os << " - type: "; switch (tensor.dtype) { case PaddleDType::FLOAT32: os << "float32"; break; case PaddleDType::INT64: os << "int64"; break; default: os << "unset"; } os << '\n'; os << " - shape: " << to_string(tensor.shape) << '\n'; os << " - lod: "; for (auto &l : tensor.lod) { os << to_string(l) << "; "; } os << "\n"; os << " - data: "; int dim = VecReduceToInt(tensor.shape); for (int i = 0; i < dim; i++) { os << static_cast(tensor.data.data())[i] << " "; } os << '\n'; return os.str(); } static void PrintTime(int batch_size, int repeat, int num_threads, int tid, double latency, int epoch = 1) { LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat << ", threads: " << num_threads << ", thread id: " << tid << ", latency: " << latency << "ms, fps: " << 1 / (latency / 1000.f) << " ======"; if (epoch > 1) { int samples = batch_size * epoch; LOG(INFO) << "====== sample number: " << samples << ", average latency of each sample: " << latency / samples << "ms ======"; } } } // namespace inference } // namespace paddle