# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import copy import six from .framework import Parameter, dtype_is_floating, in_dygraph_mode from . import unique_name from paddle.fluid.initializer import Constant, Xavier from .param_attr import ParamAttr from . import core from six.moves import zip from .layer_helper_base import LayerHelperBase class LayerHelper(LayerHelperBase): def __init__(self, layer_type, **kwargs): self.kwargs = kwargs name = self.kwargs.get('name', None) # TODO(panyx0718, minqiyang): dygraph mode # can not use both `layer_type` and `name`. Deprecate LayerHelper # and write a Helper for dygraph mode. if name is None: self.kwargs['name'] = unique_name.generate(layer_type) super(LayerHelper, self).__init__( self.kwargs['name'], layer_type=layer_type) def append_op(self, *args, **kwargs): return self.main_program.current_block().append_op(*args, **kwargs) def multiple_input(self, input_param_name='input'): inputs = self.kwargs.get(input_param_name, []) ret = [] if isinstance(inputs, list) or isinstance(inputs, tuple): for inp in inputs: ret.append(self.to_variable(inp)) else: ret.append(self.to_variable(inputs)) return ret def input(self, input_param_name='input'): inputs = self.multiple_input(input_param_name) if len(inputs) != 1: raise "{0} layer only takes one input".format(self.layer_type) return inputs[0] @property def param_attr(self): return ParamAttr._to_attr(self.kwargs.get('param_attr', None)) @property def bias_attr(self): return ParamAttr._to_attr(self.kwargs.get('bias_attr', None)) #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of param_attr def multiple_param_attr(self, length): param_attr = self.param_attr if isinstance(param_attr, ParamAttr): param_attr = [param_attr] if len(param_attr) != 1 and len(param_attr) != length: raise ValueError("parameter number mismatch") elif len(param_attr) == 1 and length != 1: tmp = [None] * length for i in six.moves.range(length): tmp[i] = copy.deepcopy(param_attr[0]) param_attr = tmp return param_attr def iter_inputs_and_params(self, input_param_name='input'): inputs = self.multiple_input(input_param_name) param_attrs = self.multiple_param_attr(len(inputs)) for ipt, param_attr in zip(inputs, param_attrs): yield ipt, param_attr def input_dtype(self, input_param_name='input'): inputs = self.multiple_input(input_param_name) dtype = None for each in inputs: if dtype is None: dtype = each.dtype elif dtype != each.dtype: raise ValueError("Data Type mismatch: %d to %d" % (dtype, each.dtype)) return dtype def get_parameter(self, name): param = self.main_program.global_block().var(name) if not isinstance(param, Parameter): raise ValueError("no Parameter name %s found" % name) return param #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of bias_attr def append_bias_op(self, input_var, dim_start=1, dim_end=None): """ Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var :param input_var: the input variable. The len(input_var.shape) is larger or equal than 2. :bias_initializer: an instance of a subclass of Initializer used to initialize the bias :param dim_start: :param dim_end: the shape of the bias will be input_var.shape[dim_start:dim_end]. The bias is broadcasted to other dimensions and added to input_var to get the output """ size = list(input_var.shape[dim_start:dim_end]) bias_attr = self.bias_attr if not bias_attr: return input_var b = self.create_parameter( attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True) tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type='elementwise_add', inputs={'X': [input_var], 'Y': [b]}, outputs={'Out': [tmp]}, attrs={'axis': dim_start}) return tmp #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of act def append_activation(self, input_var): act = self.kwargs.get('act', None) if act is None: return input_var if isinstance(act, six.string_types): act = {'type': act} else: raise TypeError(str(act) + " should be unicode or str") if 'use_cudnn' in self.kwargs and self.kwargs.get('use_cudnn'): act['use_cudnn'] = self.kwargs.get('use_cudnn') if 'use_mkldnn' in self.kwargs: act['use_mkldnn'] = self.kwargs.get('use_mkldnn') act_type = act.pop('type') tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type=act_type, inputs={"X": [input_var]}, outputs={"Out": [tmp]}, attrs=act) return tmp #TODO (jiabin): should we remove this since it has never be used def _get_default_initializer(self, dtype): if dtype is None or dtype_is_floating(dtype) is True: return Xavier() else: # For integer and boolean types, initialize with all zeros return Constant() #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of kwargs def is_instance(self, param_name, cls): param = self.kwargs.get(param_name, None) if not isinstance(param, cls): raise TypeError("The input {0} parameter of method {1} must be {2}", param_name, self.layer_type, cls.__name__)