# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import paddle paddle.enable_static() import os import paddle.fluid as fluid class TestFleetBase(unittest.TestCase): def setUp(self): os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_PORT"] = "36000" os.environ["PADDLE_TRAINERS_NUM"] = "1" #os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \ # "127.0.0.1:36001,127.0.0.2:36001" def test_ps_minimize(self): import paddle import paddle.distributed.fleet as fleet os.environ["TRAINING_ROLE"] = "TRAINER" os.environ["PADDLE_TRAINER_ID"] = "1" input_x = paddle.fluid.layers.data(name="x", shape=[32], dtype='float32') input_slot = paddle.fluid.layers.data(name="slot", shape=[1], dtype='int64') input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') emb = paddle.fluid.layers.embedding(input=input_slot, size=[10, 9], is_sparse=True) input_x = paddle.concat(x=[input_x, emb], axis=1) fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) role = fleet.PaddleCloudRoleMaker(is_collective=False) fleet.init(role) strategy = paddle.distributed.fleet.DistributedStrategy() strategy.a_sync = False strategy.a_sync_configs = {"launch_barrier": False} optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(paddle.static.default_startup_program()) pe = fluid.ParallelExecutor(use_cuda=False, loss_name=avg_cost.name) compiled_prog = fluid.compiler.CompiledProgram( fluid.default_main_program()) temp_dir = tempfile.TemporaryDirectory() fleet.init_worker() fleet.fleet.save(dirname=temp_dir.name, feed=['x', 'y'], fetch=[avg_cost]) fleet.fleet.save(dirname=temp_dir.name, feed=[input_x, input_y], fetch=[avg_cost]) fleet.fleet.save(dirname=temp_dir.name) fleet.load_model(path=temp_dir.name, mode=0) fleet.load_model(path=temp_dir.name, mode=1) temp_dir.cleanup() if __name__ == "__main__": unittest.main()