# copyright (c) 2019 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import paddle import unittest import paddle.fluid as fluid from mobilenet import MobileNet from paddle.fluid.contrib.slim.core import Compressor from paddle.fluid.contrib.slim.graph import GraphWrapper class TestDistillationStrategy(unittest.TestCase): """ Test API of distillation strategy. """ def test_compression(self): if not fluid.core.is_compiled_with_cuda(): return class_dim = 10 image_shape = [1, 28, 28] image = fluid.layers.data( name='image', shape=image_shape, dtype='float32') image.stop_gradient = False label = fluid.layers.data(name='label', shape=[1], dtype='int64') out = MobileNet(name="student").net(input=image, class_dim=class_dim) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) val_program = fluid.default_main_program().clone(for_test=False) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) optimizer = fluid.optimizer.Momentum( momentum=0.9, learning_rate=fluid.layers.piecewise_decay( boundaries=[5, 10], values=[0.01, 0.001, 0.0001]), regularization=fluid.regularizer.L2Decay(4e-5)) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) val_feed_list = [('img', image.name), ('label', label.name)] val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5', acc_top5.name)] train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=128) train_feed_list = [('img', image.name), ('label', label.name)] train_fetch_list = [('loss', avg_cost.name)] # define teacher program teacher_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(teacher_program, startup_program): img = teacher_program.global_block()._clone_variable( image, force_persistable=False) predict = MobileNet(name="teacher").net(input=img, class_dim=class_dim) exe.run(startup_program) com_pass = Compressor( place, fluid.global_scope(), fluid.default_main_program(), train_reader=train_reader, train_feed_list=train_feed_list, train_fetch_list=train_fetch_list, eval_program=val_program, eval_reader=val_reader, eval_feed_list=val_feed_list, eval_fetch_list=val_fetch_list, teacher_programs=[teacher_program.clone(for_test=True)], train_optimizer=optimizer, distiller_optimizer=optimizer) com_pass.config('./distillation/compress.yaml') eval_graph = com_pass.run() if __name__ == '__main__': unittest.main()