#start_epoch(int): The epoch when to merge student graph and teacher graph for # distillation training. default: 0 # #end_epoch(int): The epoch when to finish distillation training. default: 0 # #student_feature_map(str): The name of feature map from student network. # #teacher_feature_map(str): The name of feature map from teacher network. # It's shape should be the same with student network. # #student_pairs(list): Each tuple, with two variable names, in student_pairs indicates # a section in student network. The variables in a tuple should # have the same feature map size. # #teacher_pairs(list): Each tuple, with two variable names, in teacher_pairs indicates # a section in teacher network. The variables in a tuple should # have the same feature map size. Varibale named teacher_pairs[i][j] # should has the save channel number with that of variable named # student_pairs[i][j]. # #distillation_loss_weight(float): The weight of the loss. version: 1.0 distillers: fsp_distiller: class: 'FSPDistiller' # teacher_pairs: [['teacher_depthwise_conv2d_1.tmp_0', 'teacher_conv2d_3.tmp_0']] # student_pairs: [['student_depthwise_conv2d_1.tmp_0', 'student_conv2d_3.tmp_0']] teacher_pairs: [['teacher_conv2_1_dw.tmp_0', 'teacher_conv1.tmp_0']] student_pairs: [['student_conv2_1_dw.tmp_0', 'student_conv1.tmp_0']] distillation_loss_weight: 1 l2_distiller: class: 'L2Distiller' teacher_feature_map: 'teacher.tmp_2' student_feature_map: 'student.tmp_2' distillation_loss_weight: 1 soft_label_distiller: class: 'SoftLabelDistiller' student_temperature: 1.0 teacher_temperature: 1.0 teacher_feature_map: 'teacher.tmp_1' student_feature_map: 'student.tmp_1' distillation_loss_weight: 0.001 strategies: distillation_strategy: class: 'DistillationStrategy' distillers: ['fsp_distiller', 'l2_distiller', 'soft_label_distiller'] start_epoch: 0 end_epoch: 1 compressor: epoch: 1 checkpoint_path: './distillation_checkpoints/' strategies: - distillation_strategy