# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.vision.transforms import transforms SEED = 2022 class TestTransformUnitTestBase(unittest.TestCase): def setUp(self): self.img = (np.random.rand(*self.get_shape()) * 255.0).astype( np.float32 ) self.set_trans_api() def get_shape(self): return (3, 64, 64) def set_trans_api(self): self.api = transforms.Resize(size=16) def dynamic_transform(self): paddle.seed(SEED) img_t = paddle.to_tensor(self.img) return self.api(img_t) def static_transform(self): paddle.enable_static() paddle.seed(SEED) main_program = paddle.static.Program() with paddle.static.program_guard(main_program): x = paddle.static.data( shape=self.get_shape(), dtype=paddle.float32, name='img' ) out = self.api(x) exe = paddle.static.Executor() res = exe.run(main_program, fetch_list=[out], feed={'img': self.img}) paddle.disable_static() return res[0] def test_transform(self): dy_res = self.dynamic_transform() if isinstance(dy_res, paddle.Tensor): dy_res = dy_res.numpy() st_res = self.static_transform() np.testing.assert_almost_equal(dy_res, st_res) class TestResize(TestTransformUnitTestBase): def set_trans_api(self): self.api = transforms.Resize(size=(16, 16)) class TestResizeError(TestTransformUnitTestBase): def test_transform(self): pass def test_error(self): paddle.enable_static() # Not support while w<=0 or h<=0, but received w=-1, h=-1 with self.assertRaises(NotImplementedError): main_program = paddle.static.Program() with paddle.static.program_guard(main_program): x = paddle.static.data( shape=[-1, -1, -1], dtype=paddle.float32, name='img' ) self.api(x) paddle.disable_static() class TestRandomVerticalFlip0(TestTransformUnitTestBase): def set_trans_api(self): self.api = transforms.RandomVerticalFlip(prob=0) class TestRandomVerticalFlip1(TestTransformUnitTestBase): def set_trans_api(self): self.api = transforms.RandomVerticalFlip(prob=1) class TestRandomHorizontalFlip0(TestTransformUnitTestBase): def set_trans_api(self): self.api = transforms.RandomHorizontalFlip(0) class TestRandomHorizontalFlip1(TestTransformUnitTestBase): def set_trans_api(self): self.api = transforms.RandomHorizontalFlip(1) class TestRandomCrop_random(TestTransformUnitTestBase): def get_shape(self): return (3, 240, 240) def set_trans_api(self): self.crop_size = (224, 224) self.api = transforms.RandomCrop(self.crop_size) def assert_test_random_equal(self, res, eps=10e-5): _, h, w = self.get_shape() c_h, c_w = self.crop_size res_assert = True for y in range(h - c_h): for x in range(w - c_w): diff_abs_sum = np.abs( (self.img[:, y : y + c_h, x : x + c_w] - res) ).sum() if diff_abs_sum < eps: res_assert = False break if not res_assert: break assert not res_assert def test_transform(self): dy_res = self.dynamic_transform().numpy() st_res = self.static_transform() self.assert_test_random_equal(dy_res) self.assert_test_random_equal(st_res) class TestRandomCrop_same(TestTransformUnitTestBase): def get_shape(self): return (3, 224, 224) def set_trans_api(self): self.crop_size = (224, 224) self.api = transforms.RandomCrop(self.crop_size) class TestRandomRotation(TestTransformUnitTestBase): def set_trans_api(self): degree = np.random.uniform(-180, 180) eps = 10e-5 degree_tuple = (degree - eps, degree + eps) self.api = transforms.RandomRotation(degree_tuple) class TestRandomRotation_expand_True(TestTransformUnitTestBase): def set_trans_api(self): degree = np.random.uniform(-180, 180) eps = 10e-5 degree_tuple = (degree - eps, degree + eps) self.api = transforms.RandomRotation(degree_tuple, expand=True, fill=3) class TestRandomResizedCrop(TestTransformUnitTestBase): def set_trans_api(self, eps=10e-5): c, h, w = self.get_shape() size = h, w scale = (1 - eps, 1.0) ratio = (1 - eps, 1.0) self.api = transforms.RandomResizedCrop(size, scale=scale, ratio=ratio) if __name__ == "__main__": unittest.main()