/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/funcs/maxouting.h" #include "paddle/phi/backends/cpu/cpu_context.h" namespace phi { namespace funcs { // All tensors are in NCHW or NHWC format, and the groups must be greater than 1 template void MaxOutFunctor::operator()(const DeviceContext& context, const phi::DenseTensor& input, phi::DenseTensor* output, const int groups, const int axis) { const int batch_size = input.dims()[0]; const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]); const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]); const int output_channels = output->dims()[axis]; int fea_size = input_height * input_width; // c_size means the output size of each sample int c_size = fea_size * output_channels; const T* input_data = input.data(); T* output_data = context.template Alloc(output); for (int i = 0; i < batch_size; ++i) { int new_bindex = c_size * i; for (int c = 0; c < output_channels; ++c) { int new_cindex = fea_size * c; for (int f = 0; f < fea_size; ++f) { T ele = static_cast(-FLT_MAX); int input_idx, output_idx; for (int ph = 0; ph < groups; ++ph) { if (axis == 1) { input_idx = (new_bindex + new_cindex) * groups + ph * fea_size + f; } else { input_idx = (new_bindex + f * output_channels + c) * groups + ph; } T x = input_data[input_idx]; ele = ele > x ? ele : x; } if (axis == 1) { output_idx = new_bindex + new_cindex + f; } else { output_idx = new_bindex + f * output_channels + c; } output_data[output_idx] = ele; } } } } template void MaxOutGradFunctor::operator()( const DeviceContext& context, const phi::DenseTensor& input, phi::DenseTensor* input_grad, const phi::DenseTensor& output, const phi::DenseTensor& output_grad, const int groups, const int axis) { const int batch_size = input.dims()[0]; const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]); const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]); const int output_channels = output.dims()[axis]; int fea_size = input_height * input_width; const T* input_data = input.data(); const T* output_data = output.data(); const T* output_grad_data = output_grad.data(); T* input_grad_data = context.template Alloc(input_grad); for (int i = 0; i < batch_size; ++i) { int blen = fea_size * output_channels * i; for (int c = 0; c < output_channels; ++c) { int clen = fea_size * c; for (int f = 0; f < fea_size; ++f) { int input_idx0, output_idx; bool continue_match = true; if (axis == 1) { input_idx0 = (blen + clen) * groups + f; output_idx = blen + clen + f; } else { input_idx0 = (blen + f * output_channels + c) * groups; output_idx = blen + f * output_channels + c; } for (int g = 0; g < groups && continue_match; ++g) { int idx_offset = (axis == 1 ? fea_size * g : g); int input_idx = input_idx0 + idx_offset; if (input_data[input_idx] == output_data[output_idx]) { input_grad_data[input_idx] += output_grad_data[output_idx]; continue_match = false; } } } } } } template class MaxOutGradFunctor; template class MaxOutGradFunctor; template class MaxOutFunctor; template class MaxOutFunctor; } // namespace funcs } // namespace phi